--- base_model: google/gemma-3-270m-it library_name: peft pipeline_tag: text-generation tags: - lora - sft - transformers - trl license: gemma --- # Gemma 3 270M Fine-Tuned with LoRA This model is a **fine-tuned derivative of Google's Gemma 3 270M** using LoRA. **fp16 version** It was fine-tuned by on a small dataset of Gen Z conversations in **Hinglish**, focusing on casual interactions among college students. **fp32** one is here : [link to fp32](https://huggingface.co/Tohidichi/gemma3-genz-270m/settings/) ## Model Details - **Developed by:** Toheed Akhtar - **Model type:** Causal Language Model (text-generation) - **Language(s):** Multilingual (Hinglish focus) - **License:** Subject to [Gemma Terms of Use](https://ai.google.dev/gemma/terms) - **Finetuned from model:** google/gemma-3-270m-it ## Intended Use This model is designed for **casual text generation**, simulating informal Gen Z conversations in Hinglish. It is mainly intended for **personal experimentation**. ### Out-of-Scope Use - The model may not produce accurate or safe content for critical applications. ## How to Get Started ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from peft import PeftModel # Set device for pipeline device = 0 if torch.cuda.is_available() else -1 # 0 = first GPU, -1 = CPU # Load base model base_model_name = "google/gemma-3-270m-it" base_model = AutoModelForCausalLM.from_pretrained( base_model_name, torch_dtype=torch.float16 ) # Load PEFT LoRA fine-tuned model from Hugging Face Hub peft_model_hf = "Tohidichi/gemma3-genz16-270m" model = PeftModel.from_pretrained(base_model, peft_model_hf) model.eval() # Load tokenizer from the PEFT model repo tokenizer = AutoTokenizer.from_pretrained(peft_model_hf) # Create text-generation pipeline text_gen_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, device=device )