Tirthankar commited on
Commit
3ad8282
·
1 Parent(s): 29ab532

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ base_model: facebook/mms-1b-all
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - wer
8
+ model-index:
9
+ - name: mms_kas_speed1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # mms_kas_speed1
17
+
18
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.8096
21
+ - Wer: 0.5141
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.001
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 100
47
+ - num_epochs: 30
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
53
+ | 6.8005 | 0.12 | 100 | 1.8647 | 1.0536 |
54
+ | 1.8539 | 0.23 | 200 | 1.5445 | 0.9513 |
55
+ | 1.6826 | 0.35 | 300 | 1.5297 | 0.9316 |
56
+ | 1.6042 | 0.46 | 400 | 1.3865 | 0.9056 |
57
+ | 1.5353 | 0.58 | 500 | 1.3953 | 0.9043 |
58
+ | 1.5256 | 0.69 | 600 | 1.4043 | 0.9020 |
59
+ | 1.5491 | 0.81 | 700 | 1.3509 | 0.8694 |
60
+ | 1.475 | 0.93 | 800 | 1.4780 | 0.9107 |
61
+ | 1.4637 | 1.04 | 900 | 1.2694 | 0.8848 |
62
+ | 1.4401 | 1.16 | 1000 | 1.4087 | 0.8711 |
63
+ | 1.4125 | 1.27 | 1100 | 1.3147 | 0.8519 |
64
+ | 1.3864 | 1.39 | 1200 | 1.1807 | 0.8231 |
65
+ | 1.3294 | 1.5 | 1300 | 1.1504 | 0.8144 |
66
+ | 1.3606 | 1.62 | 1400 | 1.2630 | 0.8449 |
67
+ | 1.3254 | 1.74 | 1500 | 1.3070 | 0.8340 |
68
+ | 1.349 | 1.85 | 1600 | 1.1008 | 0.7980 |
69
+ | 1.3251 | 1.97 | 1700 | 1.1150 | 0.7854 |
70
+ | 1.3539 | 2.08 | 1800 | 1.0956 | 0.7943 |
71
+ | 1.266 | 2.2 | 1900 | 1.1196 | 0.7870 |
72
+ | 1.2787 | 2.31 | 2000 | 1.1659 | 0.7994 |
73
+ | 1.2902 | 2.43 | 2100 | 1.1099 | 0.7827 |
74
+ | 1.2761 | 2.55 | 2200 | 1.1361 | 0.8044 |
75
+ | 1.2559 | 2.66 | 2300 | 1.1497 | 0.8049 |
76
+ | 1.2294 | 2.78 | 2400 | 1.2398 | 0.8053 |
77
+ | 1.2438 | 2.89 | 2500 | 1.1234 | 0.7849 |
78
+ | 1.2736 | 3.01 | 2600 | 1.0433 | 0.7618 |
79
+ | 1.2337 | 3.12 | 2700 | 1.0905 | 0.7703 |
80
+ | 1.2079 | 3.24 | 2800 | 1.3420 | 0.8411 |
81
+ | 1.209 | 3.36 | 2900 | 1.0911 | 0.7879 |
82
+ | 1.2158 | 3.47 | 3000 | 1.2058 | 0.8023 |
83
+ | 1.176 | 3.59 | 3100 | 1.1623 | 0.7880 |
84
+ | 1.1775 | 3.7 | 3200 | 1.0644 | 0.7419 |
85
+ | 1.2212 | 3.82 | 3300 | 1.0549 | 0.7605 |
86
+ | 1.1774 | 3.94 | 3400 | 1.1500 | 0.7675 |
87
+ | 1.1046 | 4.05 | 3500 | 0.9748 | 0.7184 |
88
+ | 1.1979 | 4.17 | 3600 | 1.0100 | 0.7255 |
89
+ | 1.1544 | 4.28 | 3700 | 1.0290 | 0.7275 |
90
+ | 1.1558 | 4.4 | 3800 | 1.0180 | 0.7314 |
91
+ | 1.1593 | 4.51 | 3900 | 1.0051 | 0.7097 |
92
+ | 1.1415 | 4.63 | 4000 | 1.0115 | 0.7353 |
93
+ | 1.1399 | 4.75 | 4100 | 1.0527 | 0.7241 |
94
+ | 1.1297 | 4.86 | 4200 | 1.0546 | 0.7317 |
95
+ | 1.1137 | 4.98 | 4300 | 1.0818 | 0.7462 |
96
+ | 1.1948 | 5.09 | 4400 | 1.0758 | 0.7360 |
97
+ | 1.0913 | 5.21 | 4500 | 1.0204 | 0.7210 |
98
+ | 1.1632 | 5.32 | 4600 | 0.9644 | 0.7132 |
99
+ | 1.1216 | 5.44 | 4700 | 0.9569 | 0.6822 |
100
+ | 1.0728 | 5.56 | 4800 | 0.9980 | 0.7230 |
101
+ | 1.1097 | 5.67 | 4900 | 0.9867 | 0.7014 |
102
+ | 1.072 | 5.79 | 5000 | 0.9946 | 0.6972 |
103
+ | 1.1009 | 5.9 | 5100 | 0.9339 | 0.6818 |
104
+ | 1.1313 | 6.02 | 5200 | 0.9417 | 0.6842 |
105
+ | 1.0768 | 6.13 | 5300 | 0.9828 | 0.7195 |
106
+ | 1.0997 | 6.25 | 5400 | 1.0191 | 0.7258 |
107
+ | 1.0839 | 6.37 | 5500 | 1.0013 | 0.7045 |
108
+ | 1.0997 | 6.48 | 5600 | 0.9832 | 0.7159 |
109
+ | 1.0854 | 6.6 | 5700 | 1.0778 | 0.7397 |
110
+ | 1.0398 | 6.71 | 5800 | 1.0442 | 0.7268 |
111
+ | 1.0398 | 6.83 | 5900 | 1.0284 | 0.6932 |
112
+ | 1.0773 | 6.94 | 6000 | 1.1135 | 0.7522 |
113
+ | 1.0676 | 7.06 | 6100 | 0.9657 | 0.6816 |
114
+ | 1.0227 | 7.18 | 6200 | 0.9636 | 0.6695 |
115
+ | 1.0415 | 7.29 | 6300 | 0.9700 | 0.6709 |
116
+ | 1.0438 | 7.41 | 6400 | 0.9603 | 0.6662 |
117
+ | 1.0452 | 7.52 | 6500 | 0.9563 | 0.6674 |
118
+ | 1.0295 | 7.64 | 6600 | 0.9782 | 0.6633 |
119
+ | 1.0722 | 7.75 | 6700 | 0.9988 | 0.6752 |
120
+ | 0.9848 | 7.87 | 6800 | 0.9744 | 0.6897 |
121
+ | 1.0332 | 7.99 | 6900 | 0.9118 | 0.6485 |
122
+ | 1.0041 | 8.1 | 7000 | 0.8834 | 0.6329 |
123
+ | 1.0168 | 8.22 | 7100 | 0.9263 | 0.6365 |
124
+ | 1.0368 | 8.33 | 7200 | 1.0263 | 0.6867 |
125
+ | 1.0407 | 8.45 | 7300 | 1.0120 | 0.7029 |
126
+ | 1.0175 | 8.56 | 7400 | 0.8795 | 0.6295 |
127
+ | 1.0289 | 8.68 | 7500 | 0.8969 | 0.6294 |
128
+ | 1.018 | 8.8 | 7600 | 0.9635 | 0.6718 |
129
+ | 1.005 | 8.91 | 7700 | 0.9609 | 0.6625 |
130
+ | 1.0355 | 9.03 | 7800 | 0.8945 | 0.6302 |
131
+ | 0.9918 | 9.14 | 7900 | 0.8980 | 0.6427 |
132
+ | 1.0118 | 9.26 | 8000 | 0.8830 | 0.6211 |
133
+ | 1.0235 | 9.38 | 8100 | 0.8767 | 0.6207 |
134
+ | 0.9781 | 9.49 | 8200 | 0.8673 | 0.6104 |
135
+ | 0.9999 | 9.61 | 8300 | 0.9355 | 0.6280 |
136
+ | 0.9523 | 9.72 | 8400 | 0.8717 | 0.6121 |
137
+ | 0.9823 | 9.84 | 8500 | 0.8792 | 0.6220 |
138
+ | 1.0153 | 9.95 | 8600 | 0.9116 | 0.6311 |
139
+ | 1.0141 | 10.07 | 8700 | 0.8710 | 0.6157 |
140
+ | 0.9347 | 10.19 | 8800 | 0.9062 | 0.6315 |
141
+ | 0.9759 | 10.3 | 8900 | 0.8952 | 0.6227 |
142
+ | 0.9917 | 10.42 | 9000 | 0.8938 | 0.6283 |
143
+ | 0.9994 | 10.53 | 9100 | 0.8733 | 0.6225 |
144
+ | 0.9571 | 10.65 | 9200 | 0.9060 | 0.6364 |
145
+ | 0.9428 | 10.76 | 9300 | 0.8709 | 0.6237 |
146
+ | 0.9431 | 10.88 | 9400 | 0.8321 | 0.5943 |
147
+ | 0.8845 | 11.0 | 9500 | 0.8420 | 0.6032 |
148
+ | 0.9799 | 11.11 | 9600 | 0.8888 | 0.6028 |
149
+ | 0.977 | 11.23 | 9700 | 0.8922 | 0.6046 |
150
+ | 0.9392 | 11.34 | 9800 | 0.8611 | 0.5955 |
151
+ | 0.9547 | 11.46 | 9900 | 0.8472 | 0.5885 |
152
+ | 0.9546 | 11.57 | 10000 | 0.8656 | 0.5942 |
153
+ | 0.9166 | 11.69 | 10100 | 0.8665 | 0.5987 |
154
+ | 0.9515 | 11.81 | 10200 | 0.8541 | 0.6064 |
155
+ | 0.9418 | 11.92 | 10300 | 0.8384 | 0.5919 |
156
+ | 0.9039 | 12.04 | 10400 | 0.8492 | 0.5828 |
157
+ | 0.8965 | 12.15 | 10500 | 0.8454 | 0.5875 |
158
+ | 0.9085 | 12.27 | 10600 | 0.8676 | 0.6012 |
159
+ | 0.9113 | 12.38 | 10700 | 0.8536 | 0.5983 |
160
+ | 0.9243 | 12.5 | 10800 | 0.8816 | 0.5968 |
161
+ | 0.9469 | 12.62 | 10900 | 0.8526 | 0.5965 |
162
+ | 0.9149 | 12.73 | 11000 | 0.8378 | 0.5937 |
163
+ | 0.9198 | 12.85 | 11100 | 0.8462 | 0.5990 |
164
+ | 0.9557 | 12.96 | 11200 | 0.8405 | 0.5935 |
165
+ | 0.9775 | 13.08 | 11300 | 0.8657 | 0.5948 |
166
+ | 0.874 | 13.19 | 11400 | 0.8501 | 0.5864 |
167
+ | 0.9158 | 13.31 | 11500 | 0.8703 | 0.5879 |
168
+ | 0.8855 | 13.43 | 11600 | 0.8297 | 0.5895 |
169
+ | 0.9415 | 13.54 | 11700 | 0.8645 | 0.5887 |
170
+ | 0.8593 | 13.66 | 11800 | 0.8784 | 0.5928 |
171
+ | 0.9216 | 13.77 | 11900 | 0.8388 | 0.5816 |
172
+ | 0.9196 | 13.89 | 12000 | 0.8077 | 0.5743 |
173
+ | 0.9172 | 14.0 | 12100 | 0.8880 | 0.5897 |
174
+ | 0.9014 | 14.12 | 12200 | 0.8789 | 0.5974 |
175
+ | 0.8785 | 14.24 | 12300 | 0.8454 | 0.5726 |
176
+ | 0.8721 | 14.35 | 12400 | 0.8427 | 0.5672 |
177
+ | 0.8966 | 14.47 | 12500 | 0.8278 | 0.5709 |
178
+ | 0.8975 | 14.58 | 12600 | 0.8523 | 0.5813 |
179
+ | 0.8921 | 14.7 | 12700 | 0.8126 | 0.5697 |
180
+ | 0.8766 | 14.81 | 12800 | 0.8205 | 0.5665 |
181
+ | 0.8852 | 14.93 | 12900 | 0.8418 | 0.5640 |
182
+ | 0.8276 | 15.05 | 13000 | 0.8332 | 0.5785 |
183
+ | 0.851 | 15.16 | 13100 | 0.8144 | 0.5731 |
184
+ | 0.8916 | 15.28 | 13200 | 0.8452 | 0.5632 |
185
+ | 0.8623 | 15.39 | 13300 | 0.8398 | 0.5682 |
186
+ | 0.8932 | 15.51 | 13400 | 0.8249 | 0.5667 |
187
+ | 0.8442 | 15.62 | 13500 | 0.8300 | 0.5646 |
188
+ | 0.8592 | 15.74 | 13600 | 0.8153 | 0.5584 |
189
+ | 0.9012 | 15.86 | 13700 | 0.8109 | 0.5651 |
190
+ | 0.8537 | 15.97 | 13800 | 0.8101 | 0.5677 |
191
+ | 0.8812 | 16.09 | 13900 | 0.8057 | 0.5597 |
192
+ | 0.853 | 16.2 | 14000 | 0.8124 | 0.5645 |
193
+ | 0.8691 | 16.32 | 14100 | 0.8086 | 0.5621 |
194
+ | 0.844 | 16.44 | 14200 | 0.8074 | 0.5550 |
195
+ | 0.8612 | 16.55 | 14300 | 0.8361 | 0.5654 |
196
+ | 0.8315 | 16.67 | 14400 | 0.8216 | 0.5582 |
197
+ | 0.8665 | 16.78 | 14500 | 0.8307 | 0.5596 |
198
+ | 0.8487 | 16.9 | 14600 | 0.7991 | 0.5577 |
199
+ | 0.8567 | 17.01 | 14700 | 0.8181 | 0.5535 |
200
+ | 0.8288 | 17.13 | 14800 | 0.8308 | 0.5552 |
201
+ | 0.8199 | 17.25 | 14900 | 0.8383 | 0.5639 |
202
+ | 0.8264 | 17.36 | 15000 | 0.8355 | 0.5626 |
203
+ | 0.8374 | 17.48 | 15100 | 0.8925 | 0.5725 |
204
+ | 0.8549 | 17.59 | 15200 | 0.8190 | 0.5649 |
205
+ | 0.8164 | 17.71 | 15300 | 0.8422 | 0.5585 |
206
+ | 0.8575 | 17.82 | 15400 | 0.8195 | 0.5498 |
207
+ | 0.8553 | 17.94 | 15500 | 0.8355 | 0.5610 |
208
+ | 0.8234 | 18.06 | 15600 | 0.8214 | 0.5470 |
209
+ | 0.8293 | 18.17 | 15700 | 0.8215 | 0.5511 |
210
+ | 0.7996 | 18.29 | 15800 | 0.8075 | 0.5461 |
211
+ | 0.8468 | 18.4 | 15900 | 0.8182 | 0.5487 |
212
+ | 0.8138 | 18.52 | 16000 | 0.8309 | 0.5627 |
213
+ | 0.805 | 18.63 | 16100 | 0.8103 | 0.5575 |
214
+ | 0.8329 | 18.75 | 16200 | 0.8094 | 0.5402 |
215
+ | 0.8483 | 18.87 | 16300 | 0.8116 | 0.5428 |
216
+ | 0.8222 | 18.98 | 16400 | 0.8336 | 0.5413 |
217
+ | 0.8294 | 19.1 | 16500 | 0.8040 | 0.5419 |
218
+ | 0.8043 | 19.21 | 16600 | 0.7930 | 0.5427 |
219
+ | 0.8216 | 19.33 | 16700 | 0.8451 | 0.5574 |
220
+ | 0.7831 | 19.44 | 16800 | 0.8462 | 0.5546 |
221
+ | 0.8069 | 19.56 | 16900 | 0.8230 | 0.5481 |
222
+ | 0.8022 | 19.68 | 17000 | 0.7943 | 0.5441 |
223
+ | 0.8143 | 19.79 | 17100 | 0.8110 | 0.5406 |
224
+ | 0.8018 | 19.91 | 17200 | 0.8033 | 0.5366 |
225
+ | 0.7918 | 20.02 | 17300 | 0.8030 | 0.5344 |
226
+ | 0.8177 | 20.14 | 17400 | 0.8017 | 0.5377 |
227
+ | 0.7763 | 20.25 | 17500 | 0.8152 | 0.5411 |
228
+ | 0.8226 | 20.37 | 17600 | 0.8176 | 0.5403 |
229
+ | 0.7929 | 20.49 | 17700 | 0.8153 | 0.5406 |
230
+ | 0.7727 | 20.6 | 17800 | 0.8128 | 0.5378 |
231
+ | 0.8095 | 20.72 | 17900 | 0.8041 | 0.5493 |
232
+ | 0.7799 | 20.83 | 18000 | 0.8276 | 0.5411 |
233
+ | 0.8088 | 20.95 | 18100 | 0.8295 | 0.5426 |
234
+ | 0.7682 | 21.06 | 18200 | 0.8031 | 0.5349 |
235
+ | 0.7972 | 21.18 | 18300 | 0.8072 | 0.5269 |
236
+ | 0.7694 | 21.3 | 18400 | 0.8043 | 0.5270 |
237
+ | 0.7826 | 21.41 | 18500 | 0.8324 | 0.5343 |
238
+ | 0.7667 | 21.53 | 18600 | 0.8143 | 0.5316 |
239
+ | 0.7569 | 21.64 | 18700 | 0.8142 | 0.5347 |
240
+ | 0.7939 | 21.76 | 18800 | 0.8043 | 0.5338 |
241
+ | 0.7685 | 21.88 | 18900 | 0.8080 | 0.5408 |
242
+ | 0.7667 | 21.99 | 19000 | 0.8021 | 0.5308 |
243
+ | 0.7993 | 22.11 | 19100 | 0.8081 | 0.5393 |
244
+ | 0.7205 | 22.22 | 19200 | 0.8173 | 0.5408 |
245
+ | 0.7751 | 22.34 | 19300 | 0.8017 | 0.5267 |
246
+ | 0.7477 | 22.45 | 19400 | 0.8166 | 0.5382 |
247
+ | 0.7769 | 22.57 | 19500 | 0.8138 | 0.5341 |
248
+ | 0.7766 | 22.69 | 19600 | 0.8235 | 0.5349 |
249
+ | 0.7494 | 22.8 | 19700 | 0.8135 | 0.5304 |
250
+ | 0.8126 | 22.92 | 19800 | 0.8116 | 0.5317 |
251
+ | 0.7985 | 23.03 | 19900 | 0.8099 | 0.5303 |
252
+ | 0.7698 | 23.15 | 20000 | 0.8009 | 0.5323 |
253
+ | 0.7719 | 23.26 | 20100 | 0.8241 | 0.5411 |
254
+ | 0.7761 | 23.38 | 20200 | 0.8154 | 0.5289 |
255
+ | 0.7523 | 23.5 | 20300 | 0.7987 | 0.5285 |
256
+ | 0.7292 | 23.61 | 20400 | 0.7981 | 0.5255 |
257
+ | 0.7497 | 23.73 | 20500 | 0.8062 | 0.5180 |
258
+ | 0.7469 | 23.84 | 20600 | 0.7998 | 0.5287 |
259
+ | 0.7592 | 23.96 | 20700 | 0.8060 | 0.5265 |
260
+ | 0.7454 | 24.07 | 20800 | 0.8077 | 0.5296 |
261
+ | 0.7512 | 24.19 | 20900 | 0.8025 | 0.5277 |
262
+ | 0.7107 | 24.31 | 21000 | 0.8019 | 0.5284 |
263
+ | 0.7251 | 24.42 | 21100 | 0.7989 | 0.5248 |
264
+ | 0.7594 | 24.54 | 21200 | 0.8122 | 0.5249 |
265
+ | 0.7689 | 24.65 | 21300 | 0.8044 | 0.5225 |
266
+ | 0.7655 | 24.77 | 21400 | 0.8296 | 0.5247 |
267
+ | 0.7278 | 24.88 | 21500 | 0.8119 | 0.5245 |
268
+ | 0.7731 | 25.0 | 21600 | 0.7953 | 0.5222 |
269
+ | 0.7447 | 25.12 | 21700 | 0.8010 | 0.5208 |
270
+ | 0.7226 | 25.23 | 21800 | 0.8155 | 0.5212 |
271
+ | 0.7278 | 25.35 | 21900 | 0.8084 | 0.5229 |
272
+ | 0.7221 | 25.46 | 22000 | 0.8268 | 0.5277 |
273
+ | 0.739 | 25.58 | 22100 | 0.8054 | 0.5233 |
274
+ | 0.7657 | 25.69 | 22200 | 0.8004 | 0.5192 |
275
+ | 0.7624 | 25.81 | 22300 | 0.8081 | 0.5215 |
276
+ | 0.7264 | 25.93 | 22400 | 0.8069 | 0.5210 |
277
+ | 0.7596 | 26.04 | 22500 | 0.8084 | 0.5225 |
278
+ | 0.706 | 26.16 | 22600 | 0.8108 | 0.5195 |
279
+ | 0.7472 | 26.27 | 22700 | 0.8026 | 0.5159 |
280
+ | 0.7441 | 26.39 | 22800 | 0.8052 | 0.5158 |
281
+ | 0.7447 | 26.5 | 22900 | 0.8117 | 0.5185 |
282
+ | 0.6842 | 26.62 | 23000 | 0.7987 | 0.5139 |
283
+ | 0.7491 | 26.74 | 23100 | 0.7985 | 0.5140 |
284
+ | 0.7017 | 26.85 | 23200 | 0.8118 | 0.5158 |
285
+ | 0.7251 | 26.97 | 23300 | 0.8076 | 0.5172 |
286
+ | 0.7659 | 27.08 | 23400 | 0.8078 | 0.5160 |
287
+ | 0.7246 | 27.2 | 23500 | 0.8105 | 0.5159 |
288
+ | 0.7258 | 27.31 | 23600 | 0.8139 | 0.5183 |
289
+ | 0.7133 | 27.43 | 23700 | 0.8158 | 0.5150 |
290
+ | 0.6811 | 27.55 | 23800 | 0.8186 | 0.5145 |
291
+ | 0.7248 | 27.66 | 23900 | 0.7984 | 0.5108 |
292
+ | 0.7335 | 27.78 | 24000 | 0.8076 | 0.5162 |
293
+ | 0.6924 | 27.89 | 24100 | 0.8034 | 0.5129 |
294
+ | 0.7464 | 28.01 | 24200 | 0.8088 | 0.5131 |
295
+ | 0.7253 | 28.12 | 24300 | 0.8072 | 0.5119 |
296
+ | 0.7401 | 28.24 | 24400 | 0.8094 | 0.5125 |
297
+ | 0.7092 | 28.36 | 24500 | 0.8070 | 0.5153 |
298
+ | 0.7352 | 28.47 | 24600 | 0.8053 | 0.5128 |
299
+ | 0.7121 | 28.59 | 24700 | 0.8034 | 0.5139 |
300
+ | 0.6904 | 28.7 | 24800 | 0.8108 | 0.5136 |
301
+ | 0.7099 | 28.82 | 24900 | 0.8095 | 0.5141 |
302
+ | 0.6814 | 28.94 | 25000 | 0.8127 | 0.5167 |
303
+ | 0.6657 | 29.05 | 25100 | 0.8089 | 0.5139 |
304
+ | 0.721 | 29.17 | 25200 | 0.8117 | 0.5163 |
305
+ | 0.6886 | 29.28 | 25300 | 0.8120 | 0.5154 |
306
+ | 0.6974 | 29.4 | 25400 | 0.8087 | 0.5143 |
307
+ | 0.7067 | 29.51 | 25500 | 0.8102 | 0.5162 |
308
+ | 0.7311 | 29.63 | 25600 | 0.8119 | 0.5157 |
309
+ | 0.697 | 29.75 | 25700 | 0.8097 | 0.5145 |
310
+ | 0.7126 | 29.86 | 25800 | 0.8098 | 0.5139 |
311
+ | 0.7021 | 29.98 | 25900 | 0.8096 | 0.5141 |
312
+
313
+
314
+ ### Framework versions
315
+
316
+ - Transformers 4.34.0.dev0
317
+ - Pytorch 2.1.0.dev20230523+cu117
318
+ - Datasets 2.14.5
319
+ - Tokenizers 0.13.2
adapter.kas.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a258f1256f94a36f20b43d460790fee4bb5fcab58f97d8c78017950169cbde5
3
+ size 9018880
alphabet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"labels": ["", "\u2047", " ", "<s>", "</s>", "\u067e", "\u0638", "\u0654", "\u0656", "\u06d2", "\u0652", "\u060c", "\u06d4", "\u201c", "\u0679", "\u065f", "\u061f", "\u0645", "\u064f", "\u0651", "\u0698", "\u0655", "\u0624", "\u062f", "\u0634", "\u06cc", "\u06f1", "\u0636", "\u0648", "\u0657", "\u064b", "\u0625", "\u0633", "\u0622", "\u06a9", "\u063a", "\u0630", "\u06c6", "\u0644", "\u0631", "\u06c1", "\u0641", "\u0623", "\u06c4", "\u0639", "\u06f7", "\u062b", "\u062a", "\u06af", "\u062d", "\u06be", "\u06f5", "\u06ba", "\u062c", "\u064e", "\u0691", "\u06f9", "\u0686", "\u0632", "\u0627", "\u0646", "\u0637", "\u066e", "\u0635", "\u0672", "\u062e", "\u0653", "\u06f8", "\u0642", "\u0688", "\u0650", "\u0628", "\u065a", "\u0620"], "is_bpe": false}
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/root/openstream/kashmiri/huggingface/models/mms_kas_speed1LM",
3
  "activation_dropout": 0.05,
4
  "adapter_attn_dim": 16,
5
  "adapter_kernel_size": 3,
@@ -101,7 +101,7 @@
101
  1
102
  ],
103
  "torch_dtype": "float32",
104
- "transformers_version": "4.35.0",
105
  "use_weighted_layer_sum": false,
106
  "vocab_size": 74,
107
  "xvector_output_dim": 512
 
1
  {
2
+ "_name_or_path": "facebook/mms-1b-all",
3
  "activation_dropout": 0.05,
4
  "adapter_attn_dim": 16,
5
  "adapter_kernel_size": 3,
 
101
  1
102
  ],
103
  "torch_dtype": "float32",
104
+ "transformers_version": "4.34.0.dev0",
105
  "use_weighted_layer_sum": false,
106
  "vocab_size": 74,
107
  "xvector_output_dim": 512
language_model/5gram1.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b9a135d37956100f8c520d19fe8b09266d920b135abbc635e9db2a3d4b9c7aa
3
+ size 4173018
language_model/attrs.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
language_model/unigrams.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "processor_class": "Wav2Vec2ProcessorWithLM",
8
+ "return_attention_mask": false,
9
+ "sampling_rate": 16000
10
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:464a5cf3e59e1913a28930ded44d48cc855367cf0077ab4f64b6b6a6c1fa8e9e
3
+ size 3859355334
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "[UNK]"
6
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "3": {
20
+ "content": "<s>",
21
+ "lstrip": true,
22
+ "normalized": false,
23
+ "rstrip": true,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "4": {
28
+ "content": "</s>",
29
+ "lstrip": true,
30
+ "normalized": false,
31
+ "rstrip": true,
32
+ "single_word": false,
33
+ "special": false
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "do_lower_case": false,
39
+ "eos_token": "</s>",
40
+ "model_max_length": 1000000000000000019884624838656,
41
+ "pad_token": "[PAD]",
42
+ "processor_class": "Wav2Vec2ProcessorWithLM",
43
+ "replace_word_delimiter_char": " ",
44
+ "target_lang": null,
45
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
46
+ "unk_token": "[UNK]",
47
+ "word_delimiter_token": "|"
48
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:230ece6a9f5d26bccf3f45a2ed94ddf14f3cac2f521fc727d36a639d195f5dad
3
+ size 4468
vocab.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 4,
3
+ "<s>": 3,
4
+ "[PAD]": 0,
5
+ "[UNK]": 1,
6
+ "|": 2,
7
+ "،": 11,
8
+ "؟": 16,
9
+ "ؠ": 73,
10
+ "آ": 33,
11
+ "أ": 42,
12
+ "ؤ": 22,
13
+ "إ": 31,
14
+ "ا": 59,
15
+ "ب": 71,
16
+ "ت": 47,
17
+ "ث": 46,
18
+ "ج": 53,
19
+ "ح": 49,
20
+ "خ": 65,
21
+ "د": 23,
22
+ "ذ": 36,
23
+ "ر": 39,
24
+ "ز": 58,
25
+ "س": 32,
26
+ "ش": 24,
27
+ "ص": 63,
28
+ "ض": 27,
29
+ "ط": 61,
30
+ "ظ": 6,
31
+ "ع": 44,
32
+ "غ": 35,
33
+ "ف": 41,
34
+ "ق": 68,
35
+ "ل": 38,
36
+ "م": 17,
37
+ "ن": 60,
38
+ "و": 28,
39
+ "ً": 30,
40
+ "َ": 54,
41
+ "ُ": 18,
42
+ "ِ": 70,
43
+ "ّ": 19,
44
+ "ْ": 10,
45
+ "ٓ": 66,
46
+ "ٔ": 7,
47
+ "ٕ": 21,
48
+ "ٖ": 8,
49
+ "ٗ": 29,
50
+ "ٚ": 72,
51
+ "ٟ": 15,
52
+ "ٮ": 62,
53
+ "ٲ": 64,
54
+ "ٹ": 14,
55
+ "پ": 5,
56
+ "چ": 57,
57
+ "ڈ": 69,
58
+ "ڑ": 55,
59
+ "ژ": 20,
60
+ "ک": 34,
61
+ "گ": 48,
62
+ "ں": 52,
63
+ "ھ": 50,
64
+ "ہ": 40,
65
+ "ۄ": 43,
66
+ "ۆ": 37,
67
+ "ی": 25,
68
+ "ے": 9,
69
+ "۔": 12,
70
+ "۱": 26,
71
+ "۵": 51,
72
+ "۷": 45,
73
+ "۸": 67,
74
+ "۹": 56,
75
+ "“": 13
76
+ }