--- license: mit language: - en base_model: - Qwen/Qwen2.5-VL-7B-Instruct pipeline_tag: reinforcement-learning tags: - IQA - Reasoning - VLM - Pytorch - R1 - GRPO - RL2R --- # VisualQuality-R1-7B This is the latest version of VisualQuality-R1, trained on a diverse combination of synthetic and realistic datasets.
Paper link: [arXiv](https://arxiv.org/abs/2505.14460)
Code link: [github](https://github.com/TianheWu/VisualQuality-R1) > The first NR-IQA model enhanced by RL2R, capable of both quality description and rating through reasoning. ## Quick Start This section includes the usages of **VisualQuality-R1**.
Example Code (Single Image Quality Rating) ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import torch import random import re import os def score_image(image_path, model, processor): PROMPT = ( "You are doing the image quality assessment task. Here is the question: " "What is your overall rating on the quality of this picture? The rating should be a float between 1 and 5, " "rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality. " "First output the thinking process in tags and then output the final answer with only one score in tags." ) QUESTION_TEMPLATE = "{Question} First output the thinking process in tags and then output the final answer with only one score in tags." # QUESTION_TEMPLATE = "Please describe the quality of this image." message = [ { "role": "user", "content": [ {'type': 'image', 'image': image_path}, {"type": "text", "text": PROMPT} ], } ] batch_messages = [message] # Preparation for inference text = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True, add_vision_id=True) for msg in batch_messages] image_inputs, video_inputs = process_vision_info(batch_messages) inputs = processor( text=text, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(device) # Inference: Generation of the output generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=2048, do_sample=True, top_k=50, top_p=1) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] batch_output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) reasoning = re.findall(r'(.*?)', batch_output_text[0], re.DOTALL) reasoning = reasoning[-1].strip() try: model_output_matches = re.findall(r'(.*?)', batch_output_text[0], re.DOTALL) model_answer = model_output_matches[-1].strip() if model_output_matches else batch_output_text[0].strip() score = float(re.search(r'\d+(\.\d+)?', model_answer).group()) except: print(f"================= Meet error with {img_path}, please generate again. =================") score = random.randint(1, 5) return reasoning, score random.seed(1) MODEL_PATH = "" device = torch.device("cuda:5") if torch.cuda.is_available() else torch.device("cpu") image_path = "" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map=device, ) processor = AutoProcessor.from_pretrained(MODEL_PATH) processor.tokenizer.padding_side = "left" reasoning, score = score_image( image_path, model, processor ) print(reasoning) print(score) ```
Example Code (Batch Images Quality Rating) ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info from tqdm import tqdm import torch import random import re import os def get_image_paths(folder_path): image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff', '.webp'} image_paths = [] for root, dirs, files in os.walk(folder_path): for file in files: _, ext = os.path.splitext(file) if ext.lower() in image_extensions: image_paths.append(os.path.join(root, file)) return image_paths def score_batch_image(image_paths, model, processor): PROMPT = ( "You are doing the image quality assessment task. Here is the question: " "What is your overall rating on the quality of this picture? The rating should be a float between 1 and 5, " "rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality." ) QUESTION_TEMPLATE = "{Question} First output the thinking process in tags and then output the final answer with only one score in tags." messages = [] for img_path in image_paths: message = [ { "role": "user", "content": [ {'type': 'image', 'image': img_path}, {"type": "text", "text": QUESTION_TEMPLATE.format(Question=PROMPT)} ], } ] messages.append(message) BSZ = 32 all_outputs = [] # List to store all answers for i in tqdm(range(0, len(messages), BSZ)): batch_messages = messages[i:i + BSZ] # Preparation for inference text = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True, add_vision_id=True) for msg in batch_messages] image_inputs, video_inputs = process_vision_info(batch_messages) inputs = processor( text=text, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(device) # Inference: Generation of the output generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=512, do_sample=True, top_k=50, top_p=1) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] batch_output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) all_outputs.extend(batch_output_text) path_score_dict = {} for img_path, model_output in zip(image_paths, all_outputs): reasoning = re.findall(r'(.*?)', model_output, re.DOTALL) reasoning = reasoning[-1].strip() try: model_output_matches = re.findall(r'(.*?)', model_output, re.DOTALL) model_answer = model_output_matches[-1].strip() if model_output_matches else model_output.strip() score = float(re.search(r'\d+(\.\d+)?', model_answer).group()) except: print(f"Meet error with {img_path}, please generate again.") score = random.randint(1, 5) path_score_dict[img_path] = score return path_score_dict random.seed(1) MODEL_PATH = "" device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device("cpu") model = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map=device, ) processor = AutoProcessor.from_pretrained(MODEL_PATH) processor.tokenizer.padding_side = "left" image_root = "" image_paths = get_image_paths(image_root) # It should be a list path_score_dict = score_batch_image( image_paths, model, processor ) file_name = "output.txt" with open(file_name, "w") as file: for key, value in path_score_dict.items(): file.write(f"{key} {value}\n") print("Done!") ```
Example Code (Images Inference) You can prompt anything what you like in the following commands (including multi-image as input) ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import torch import random import re import os def generate(image_paths, model, prompt, processor): message = [ { "role": "user", "content": [ *({'type': 'image', 'image': img_path} for img_path in image_paths), {"type": "text", "text": prompt} ], } ] batch_messages = [message] # Preparation for inference text = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True, add_vision_id=True) for msg in batch_messages] image_inputs, video_inputs = process_vision_info(batch_messages) inputs = processor( text=text, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(device) # Inference: Generation of the output generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=2048, do_sample=True, top_k=50, top_p=1) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] batch_output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return batch_output_text[0] random.seed(1) MODEL_PATH = "" device = torch.device("cuda:5") if torch.cuda.is_available() else torch.device("cpu") image_path = [ "", "" ] model = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map=device, ) processor = AutoProcessor.from_pretrained(MODEL_PATH) processor.tokenizer.padding_side = "left" prompt = "Please describe the quality of given two images." answer = generate( image_path, model, prompt, processor ) print(answer) ```
## Related Projects - [ECCV 2024] [A Comprehensive Study of Multimodal Large Language Models for Image Quality Assessment](https://arxiv.org/abs/2403.10854v2) - [CVPR 2025] [Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption](https://www.arxiv.org/abs/2503.11221) ## 📧 Contact If you have any question, please email `wth22@mails.tsinghua.edu.cn` or `tianhewu@cityu.edu.hk`. ## BibTeX ``` @article{wu2025visualquality, title={{VisualQuality-R1}: Reasoning-Induced Image Quality Assessment via Reinforcement Learning to Rank}, author={Wu, Tianhe and Zou, Jian and Liang, Jie and Zhang, Lei and Ma, Kede}, journal={arXiv preprint arXiv:2505.14460}, year={2025} } ```