TianheWu commited on
Commit
206acd5
·
verified ·
1 Parent(s): 719cdd3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -18
README.md CHANGED
@@ -1,29 +1,29 @@
1
- ---
2
- license: mit
3
- language:
4
- - en
5
- base_model:
6
- - Qwen/Qwen2.5-VL-7B-Instruct
7
- pipeline_tag: reinforcement-learning
8
- tags:
9
- - IQA
10
- - Reasoning
11
- - VLM
12
- - Pytorch
13
- - R1
14
- ---
 
 
15
 
16
  # VisualQuality-R1-7B
17
- This is the final version of VisualQuality-R1, trained on a diverse combination of synthetic and realistic datasets.<br>
18
  Paper link: [arXiv](https://arxiv.org/abs/2505.14460)<br>
19
  Code link: [github](https://github.com/TianheWu/VisualQuality-R1)
20
 
21
  > The first NR-IQA model enhanced by RL2R, capable of both quality description and rating through reasoning.
22
 
23
 
24
-
25
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655de51982afda0fc479fb91/JZgVeMtAVASCCNYO5VCyn.png)
26
-
27
 
28
 
29
  ## Quick Start
@@ -327,6 +327,21 @@ print(answer)
327
 
328
 
329
 
 
 
 
330
 
331
 
 
 
332
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Qwen/Qwen2.5-VL-7B-Instruct
7
+ pipeline_tag: reinforcement-learning
8
+ tags:
9
+ - IQA
10
+ - Reasoning
11
+ - VLM
12
+ - Pytorch
13
+ - R1
14
+ - GRPO
15
+ - RL2R
16
+ ---
17
 
18
  # VisualQuality-R1-7B
19
+ This is the latest version of VisualQuality-R1, trained on a diverse combination of synthetic and realistic datasets.<br>
20
  Paper link: [arXiv](https://arxiv.org/abs/2505.14460)<br>
21
  Code link: [github](https://github.com/TianheWu/VisualQuality-R1)
22
 
23
  > The first NR-IQA model enhanced by RL2R, capable of both quality description and rating through reasoning.
24
 
25
 
26
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/655de51982afda0fc479fb91/JZgVeMtAVASCCNYO5VCyn.png" width="600"/>
 
 
27
 
28
 
29
  ## Quick Start
 
327
 
328
 
329
 
330
+ ## Related Projects
331
+ - [ECCV 2024] [A Comprehensive Study of Multimodal Large Language Models for Image Quality Assessment](https://arxiv.org/abs/2403.10854v2)
332
+ - [CVPR 2025] [Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption](https://www.arxiv.org/abs/2503.11221)
333
 
334
 
335
+ ## 📧 Contact
336
+ If you have any question, please email `[email protected]` or `[email protected]`.
337
 
338
+
339
+ ## BibTeX
340
+ ```
341
+ @article{wu2025visualquality,
342
+ title={{VisualQuality-R1}: Reasoning-Induced Image Quality Assessment via Reinforcement Learning to Rank},
343
+ author={Wu, Tianhe and Zou, Jian and Liang, Jie and Zhang, Lei and Ma, Kede},
344
+ journal={arXiv preprint arXiv:2505.14460},
345
+ year={2025}
346
+ }
347
+ ```