--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-New_VietNam-aug_replace_w2v-1 results: [] --- # xlm-roberta-base-New_VietNam-aug_replace_w2v-1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0760 - Accuracy: 0.73 - F1: 0.7316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0605 | 1.0 | 84 | 0.9570 | 0.55 | 0.4830 | | 0.7614 | 2.0 | 168 | 0.7075 | 0.68 | 0.6682 | | 0.5718 | 3.0 | 252 | 0.7353 | 0.74 | 0.7413 | | 0.4409 | 4.0 | 336 | 0.7226 | 0.73 | 0.7346 | | 0.3768 | 5.0 | 420 | 0.7989 | 0.76 | 0.7612 | | 0.2887 | 6.0 | 504 | 0.8930 | 0.74 | 0.7424 | | 0.2218 | 7.0 | 588 | 1.0373 | 0.74 | 0.7429 | | 0.1798 | 8.0 | 672 | 1.0760 | 0.73 | 0.7316 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3