--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_insert_tfidf results: [] --- # xlm-roberta-base-Final_VietNam-aug_insert_tfidf This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2753 - Accuracy: 0.71 - F1: 0.7161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0036 | 1.0 | 87 | 0.7585 | 0.63 | 0.6038 | | 0.6784 | 2.0 | 174 | 0.6901 | 0.7 | 0.6939 | | 0.5132 | 3.0 | 261 | 0.6510 | 0.76 | 0.7658 | | 0.3868 | 4.0 | 348 | 0.7266 | 0.74 | 0.7436 | | 0.2694 | 5.0 | 435 | 0.8702 | 0.72 | 0.7264 | | 0.1805 | 6.0 | 522 | 1.1744 | 0.72 | 0.7207 | | 0.1813 | 7.0 | 609 | 1.2328 | 0.72 | 0.7256 | | 0.1258 | 8.0 | 696 | 1.2753 | 0.71 | 0.7161 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3