--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_delete results: [] --- # xlm-roberta-base-Final_VietNam-aug_delete This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9977 - Accuracy: 0.71 - F1: 0.7211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4259 | 1.0 | 87 | 1.2266 | 0.72 | 0.7286 | | 0.2928 | 2.0 | 174 | 1.2963 | 0.7 | 0.7078 | | 0.2487 | 3.0 | 261 | 1.7082 | 0.7 | 0.7102 | | 0.1831 | 4.0 | 348 | 1.9729 | 0.68 | 0.6943 | | 0.1636 | 5.0 | 435 | 1.9036 | 0.69 | 0.7030 | | 0.1244 | 6.0 | 522 | 1.9171 | 0.7 | 0.7119 | | 0.0924 | 7.0 | 609 | 1.9842 | 0.7 | 0.7119 | | 0.0791 | 8.0 | 696 | 1.9977 | 0.71 | 0.7211 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3