--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_insert_BERT results: [] --- # PhoBERT-Final_Mixed-aug_insert_BERT This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0553 - Accuracy: 0.72 - F1: 0.7149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.924 | 1.0 | 88 | 0.7740 | 0.69 | 0.6809 | | 0.6752 | 2.0 | 176 | 0.7030 | 0.68 | 0.6721 | | 0.5014 | 3.0 | 264 | 0.7360 | 0.7 | 0.7000 | | 0.3755 | 4.0 | 352 | 0.7763 | 0.75 | 0.7438 | | 0.2593 | 5.0 | 440 | 0.8404 | 0.71 | 0.7065 | | 0.2104 | 6.0 | 528 | 0.9165 | 0.71 | 0.7078 | | 0.1361 | 7.0 | 616 | 1.0459 | 0.72 | 0.7149 | | 0.1251 | 8.0 | 704 | 1.0553 | 0.72 | 0.7149 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3