eva02-vit-large-448-8046 / inference.py
Thouph's picture
Upload inference.py
d6318cb
import json
import time
from PIL import Image
import torch
from torchvision.transforms import transforms
model = torch.load('/path/to/your/model.pth').to("cuda")
model.eval()
transform = transforms.Compose([
transforms.Resize((448, 448)),
transforms.ToTensor(),
transforms.Normalize(mean=[
0.48145466,
0.4578275,
0.40821073
], std=[
0.26862954,
0.26130258,
0.27577711
])
])
with open("tags_8041.json", "r") as file:
tags = json.load(file)
allowed_tags = sorted(tags)
allowed_tags.insert(0, "placeholder0")
allowed_tags.append("placeholder1")
allowed_tags.append("explicit")
allowed_tags.append("questionable")
allowed_tags.append("safe")
image_path = "/path/to/your/image.jpg"
start = time.time()
img = Image.open(image_path).convert('RGB')
tensor = transform(img).unsqueeze(0).to("cuda")
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.sigmoid(out[0])
indices = torch.where(probabilities > 0.3)[0]
values = probabilities[indices]
for i in range(indices.size(0)):
print(allowed_tags[indices[i]], values[i].item())
end = time.time()
print(f'Executed in {end - start} seconds')
print("\n\n", end="")