--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer datasets: - fancy_dataset metrics: - accuracy model-index: - name: longformer-spans results: - task: name: Token Classification type: token-classification dataset: name: fancy_dataset type: fancy_dataset config: spans split: test args: spans metrics: - name: Accuracy type: accuracy value: 0.9372962126912465 --- # longformer-spans This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1948 - : {'precision': 0.9405594405594405, 'recall': 0.9672104754749383, 'f1-score': 0.9536988041062546, 'support': 18634.0} - O: {'precision': 0.9301474791357037, 'recall': 0.8771967654986523, 'f1-score': 0.9028964598823661, 'support': 9275.0} - Accuracy: 0.9373 - Macro avg: {'precision': 0.9353534598475721, 'recall': 0.9222036204867954, 'f1-score': 0.9282976319943104, 'support': 27909.0} - Weighted avg: {'precision': 0.9370992326621616, 'recall': 0.9372962126912465, 'f1-score': 0.9368156573551505, 'support': 27909.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | | O | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 41 | 0.2901 | {'precision': 0.9357719203873051, 'recall': 0.9335623054631319, 'f1-score': 0.9346658070062326, 'support': 18634.0} | {'precision': 0.8671531280180277, 'recall': 0.871266846361186, 'f1-score': 0.8692051199311606, 'support': 9275.0} | 0.9129 | {'precision': 0.9014625242026664, 'recall': 0.9024145759121589, 'f1-score': 0.9019354634686966, 'support': 27909.0} | {'precision': 0.9129678321281397, 'recall': 0.9128596510086352, 'f1-score': 0.9129112521091997, 'support': 27909.0} | | No log | 2.0 | 82 | 0.2109 | {'precision': 0.9311551324929251, 'recall': 0.9711817108511324, 'f1-score': 0.9507473272216239, 'support': 18634.0} | {'precision': 0.9366296908189757, 'recall': 0.8557412398921833, 'f1-score': 0.8943602456476422, 'support': 9275.0} | 0.9328 | {'precision': 0.9338924116559504, 'recall': 0.9134614753716579, 'f1-score': 0.922553786434633, 'support': 27909.0} | {'precision': 0.9329744928596212, 'recall': 0.9328173707406213, 'f1-score': 0.9320082043007497, 'support': 27909.0} | | No log | 3.0 | 123 | 0.1948 | {'precision': 0.9405594405594405, 'recall': 0.9672104754749383, 'f1-score': 0.9536988041062546, 'support': 18634.0} | {'precision': 0.9301474791357037, 'recall': 0.8771967654986523, 'f1-score': 0.9028964598823661, 'support': 9275.0} | 0.9373 | {'precision': 0.9353534598475721, 'recall': 0.9222036204867954, 'f1-score': 0.9282976319943104, 'support': 27909.0} | {'precision': 0.9370992326621616, 'recall': 0.9372962126912465, 'f1-score': 0.9368156573551505, 'support': 27909.0} | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1