--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer datasets: - fancy_dataset metrics: - accuracy model-index: - name: longformer-spans results: - task: name: Token Classification type: token-classification dataset: name: fancy_dataset type: fancy_dataset config: spans split: test args: spans metrics: - name: Accuracy type: accuracy value: 0.9297359274785911 --- # longformer-spans This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1948 - B: {'precision': 0.773955773955774, 'recall': 0.8923512747875354, 'f1-score': 0.8289473684210527, 'support': 1059.0} - I: {'precision': 0.9401371161027814, 'recall': 0.9597155049786629, 'f1-score': 0.949825430791756, 'support': 17575.0} - O: {'precision': 0.9301474791357037, 'recall': 0.8771967654986523, 'f1-score': 0.9028964598823661, 'support': 9275.0} - Accuracy: 0.9297 - Macro avg: {'precision': 0.8814134563980863, 'recall': 0.9097545150882835, 'f1-score': 0.893889753031725, 'support': 27909.0} - Weighted avg: {'precision': 0.9305115500057043, 'recall': 0.9297359274785911, 'f1-score': 0.929642834739043, 'support': 27909.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 41 | 0.2901 | {'precision': 0.8336673346693386, 'recall': 0.392823418319169, 'f1-score': 0.5340179717586649, 'support': 1059.0} | {'precision': 0.9134376209164778, 'recall': 0.9402560455192034, 'f1-score': 0.9266528346324231, 'support': 17575.0} | {'precision': 0.8671531280180277, 'recall': 0.871266846361186, 'f1-score': 0.8692051199311606, 'support': 9275.0} | 0.8966 | {'precision': 0.8714193612012814, 'recall': 0.7347821033998527, 'f1-score': 0.7766253087740829, 'support': 27909.0} | {'precision': 0.8950290285352085, 'recall': 0.8965566663083593, 'f1-score': 0.892662800104582, 'support': 27909.0} | | No log | 2.0 | 82 | 0.2109 | {'precision': 0.7553191489361702, 'recall': 0.8715769593956563, 'f1-score': 0.8092941692240245, 'support': 1059.0} | {'precision': 0.9298303409652446, 'recall': 0.9635846372688478, 'f1-score': 0.9464066167430425, 'support': 17575.0} | {'precision': 0.9366296908189757, 'recall': 0.8557412398921833, 'f1-score': 0.8943602456476422, 'support': 9275.0} | 0.9243 | {'precision': 0.8739263935734636, 'recall': 0.8969676121855624, 'f1-score': 0.883353677204903, 'support': 27909.0} | {'precision': 0.9254681860164671, 'recall': 0.9242538249310258, 'f1-score': 0.9239073450445768, 'support': 27909.0} | | No log | 3.0 | 123 | 0.1948 | {'precision': 0.773955773955774, 'recall': 0.8923512747875354, 'f1-score': 0.8289473684210527, 'support': 1059.0} | {'precision': 0.9401371161027814, 'recall': 0.9597155049786629, 'f1-score': 0.949825430791756, 'support': 17575.0} | {'precision': 0.9301474791357037, 'recall': 0.8771967654986523, 'f1-score': 0.9028964598823661, 'support': 9275.0} | 0.9297 | {'precision': 0.8814134563980863, 'recall': 0.9097545150882835, 'f1-score': 0.893889753031725, 'support': 27909.0} | {'precision': 0.9305115500057043, 'recall': 0.9297359274785911, 'f1-score': 0.929642834739043, 'support': 27909.0} | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2