File size: 11,253 Bytes
49c7a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
datasets:
- essays_su_g
metrics:
- accuracy
model-index:
- name: longformer-spans
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: essays_su_g
      type: essays_su_g
      config: spans
      split: train[80%:100%]
      args: spans
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9414895542923349
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longformer-spans

This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2394
- B: {'precision': 0.8633828996282528, 'recall': 0.8906999041227229, 'f1-score': 0.8768286927796131, 'support': 1043.0}
- I: {'precision': 0.9488209014307527, 'recall': 0.9670317002881844, 'f1-score': 0.9578397510918277, 'support': 17350.0}
- O: {'precision': 0.9363431151241535, 'recall': 0.8991979189247779, 'f1-score': 0.917394669910428, 'support': 9226.0}
- Accuracy: 0.9415
- Macro avg: {'precision': 0.9161823053943863, 'recall': 0.9189765077785618, 'f1-score': 0.9173543712606228, 'support': 27619.0}
- Weighted avg: {'precision': 0.941426285682728, 'recall': 0.9414895542923349, 'f1-score': 0.9412699675080908, 'support': 27619.0}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | B                                                                                                                   | I                                                                                                                   | O                                                                                                                  | Accuracy | Macro avg                                                                                                           | Weighted avg                                                                                                        |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
| No log        | 1.0   | 41   | 0.2858          | {'precision': 0.8085106382978723, 'recall': 0.36433365292425696, 'f1-score': 0.5023132848645077, 'support': 1043.0} | {'precision': 0.8888126286890872, 'recall': 0.9703170028818444, 'f1-score': 0.9277782370284644, 'support': 17350.0} | {'precision': 0.9216617933723197, 'recall': 0.8199653154129634, 'f1-score': 0.8678444418951474, 'support': 9226.0} | 0.8972   | {'precision': 0.8729950201197597, 'recall': 0.7182053237396883, 'f1-score': 0.7659786545960398, 'support': 27619.0} | {'precision': 0.8967532281818084, 'recall': 0.8972084434628336, 'f1-score': 0.8916904301199235, 'support': 27619.0} |
| No log        | 2.0   | 82   | 0.2181          | {'precision': 0.7889273356401384, 'recall': 0.8744007670182167, 'f1-score': 0.8294679399727148, 'support': 1043.0}  | {'precision': 0.921101216333623, 'recall': 0.9776945244956773, 'f1-score': 0.9485544930939999, 'support': 17350.0}  | {'precision': 0.9581210388964831, 'recall': 0.8356817689139389, 'f1-score': 0.8927227464829502, 'support': 9226.0} | 0.9264   | {'precision': 0.8893831969567482, 'recall': 0.8959256868092776, 'f1-score': 0.8902483931832217, 'support': 27619.0} | {'precision': 0.9284761222100719, 'recall': 0.9263550454397336, 'f1-score': 0.9254069870605068, 'support': 27619.0} |
| No log        | 3.0   | 123  | 0.1805          | {'precision': 0.8276785714285714, 'recall': 0.8887823585810163, 'f1-score': 0.8571428571428571, 'support': 1043.0}  | {'precision': 0.9608084358523726, 'recall': 0.9453025936599424, 'f1-score': 0.952992446252179, 'support': 17350.0}  | {'precision': 0.9023226216990137, 'recall': 0.9221764578365489, 'f1-score': 0.9121415170195658, 'support': 9226.0} | 0.9354   | {'precision': 0.8969365429933193, 'recall': 0.9187538033591692, 'f1-score': 0.9074256068048673, 'support': 27619.0} | {'precision': 0.9362440211388452, 'recall': 0.9354429921430899, 'f1-score': 0.9357267308192845, 'support': 27619.0} |
| No log        | 4.0   | 164  | 0.1988          | {'precision': 0.8492366412213741, 'recall': 0.8533077660594439, 'f1-score': 0.8512673362027738, 'support': 1043.0}  | {'precision': 0.9303964757709251, 'recall': 0.9738328530259366, 'f1-score': 0.9516192621796676, 'support': 17350.0} | {'precision': 0.9456663892521697, 'recall': 0.8621287665293735, 'f1-score': 0.9019674547825594, 'support': 9226.0} | 0.9320   | {'precision': 0.9084331687481564, 'recall': 0.8964231285382512, 'f1-score': 0.9016180177216668, 'support': 27619.0} | {'precision': 0.9324324116970188, 'recall': 0.9319671240812484, 'f1-score': 0.9312436282378297, 'support': 27619.0} |
| No log        | 5.0   | 205  | 0.2100          | {'precision': 0.8506375227686703, 'recall': 0.8954937679769894, 'f1-score': 0.8724894908921066, 'support': 1043.0}  | {'precision': 0.9365704772475028, 'recall': 0.9727377521613833, 'f1-score': 0.9543115634718687, 'support': 17350.0} | {'precision': 0.9460063521938595, 'recall': 0.8716670279644483, 'f1-score': 0.9073165228182998, 'support': 9226.0} | 0.9361   | {'precision': 0.9110714507366775, 'recall': 0.9132995160342737, 'f1-score': 0.9113725257274249, 'support': 27619.0} | {'precision': 0.9364773279927747, 'recall': 0.9360585104457076, 'f1-score': 0.9355231690053595, 'support': 27619.0} |
| No log        | 6.0   | 246  | 0.2054          | {'precision': 0.8465073529411765, 'recall': 0.8830297219558965, 'f1-score': 0.8643829188174565, 'support': 1043.0}  | {'precision': 0.9236811957885549, 'recall': 0.9759077809798271, 'f1-score': 0.94907653933466, 'support': 17350.0}   | {'precision': 0.9496341463414634, 'recall': 0.8440277476696293, 'f1-score': 0.8937220245610008, 'support': 9226.0} | 0.9283   | {'precision': 0.9066075650237316, 'recall': 0.9009884168684509, 'f1-score': 0.9023938275710391, 'support': 27619.0} | {'precision': 0.929436277569623, 'recall': 0.9283464281834969, 'f1-score': 0.9273872602332724, 'support': 27619.0}  |
| No log        | 7.0   | 287  | 0.1949          | {'precision': 0.851063829787234, 'recall': 0.8820709491850431, 'f1-score': 0.8662900188323918, 'support': 1043.0}   | {'precision': 0.9430497051390059, 'recall': 0.9677809798270893, 'f1-score': 0.9552552979661499, 'support': 17350.0} | {'precision': 0.9366769724035269, 'recall': 0.8866247561239974, 'f1-score': 0.910963862130408, 'support': 9226.0}  | 0.9374   | {'precision': 0.9102635024432556, 'recall': 0.9121588950453766, 'f1-score': 0.9108363929763166, 'support': 27619.0} | {'precision': 0.9374471815063824, 'recall': 0.9374343748868532, 'f1-score': 0.937100275222493, 'support': 27619.0}  |
| No log        | 8.0   | 328  | 0.2038          | {'precision': 0.8602050326188257, 'recall': 0.8849472674976031, 'f1-score': 0.8724007561436674, 'support': 1043.0}  | {'precision': 0.9485302462830553, 'recall': 0.9634005763688761, 'f1-score': 0.9559075832094247, 'support': 17350.0} | {'precision': 0.9286194531600179, 'recall': 0.8982224149143724, 'f1-score': 0.913168044077135, 'support': 9226.0}  | 0.9387   | {'precision': 0.9124515773539663, 'recall': 0.9155234195936172, 'f1-score': 0.913825461143409, 'support': 27619.0}  | {'precision': 0.938543636514239, 'recall': 0.9386654114920888, 'f1-score': 0.9384770966362654, 'support': 27619.0}  |
| No log        | 9.0   | 369  | 0.2182          | {'precision': 0.8558310376492194, 'recall': 0.8935762224352828, 'f1-score': 0.874296435272045, 'support': 1043.0}   | {'precision': 0.9498548579885024, 'recall': 0.9618443804034582, 'f1-score': 0.9558120221083077, 'support': 17350.0} | {'precision': 0.9273518580515567, 'recall': 0.9007153696076307, 'f1-score': 0.9138395557266179, 'support': 9226.0} | 0.9388   | {'precision': 0.9110125845630929, 'recall': 0.9187119908154573, 'f1-score': 0.9146493377023236, 'support': 27619.0} | {'precision': 0.9387871320740184, 'recall': 0.9388464462869763, 'f1-score': 0.9387129695753523, 'support': 27619.0} |
| No log        | 10.0  | 410  | 0.2523          | {'precision': 0.861652739090065, 'recall': 0.8897411313518696, 'f1-score': 0.8754716981132075, 'support': 1043.0}   | {'precision': 0.938376753507014, 'recall': 0.9715850144092218, 'f1-score': 0.9546921900662626, 'support': 17350.0}  | {'precision': 0.9432268594077874, 'recall': 0.8769781053544331, 'f1-score': 0.9088968771062682, 'support': 9226.0} | 0.9369   | {'precision': 0.9144187840016221, 'recall': 0.9127680837051749, 'f1-score': 0.9130202550952461, 'support': 27619.0} | {'precision': 0.9370995142877685, 'recall': 0.9368912705021906, 'f1-score': 0.9364028048431936, 'support': 27619.0} |
| No log        | 11.0  | 451  | 0.2504          | {'precision': 0.8530762167125804, 'recall': 0.8906999041227229, 'f1-score': 0.8714821763602252, 'support': 1043.0}  | {'precision': 0.9388493211662586, 'recall': 0.972507204610951, 'f1-score': 0.9553819149538532, 'support': 17350.0}  | {'precision': 0.9457817247020331, 'recall': 0.8773032733579016, 'f1-score': 0.9102564102564102, 'support': 9226.0} | 0.9376   | {'precision': 0.9125690875269573, 'recall': 0.9135034606971919, 'f1-score': 0.9123735005234962, 'support': 27619.0} | {'precision': 0.9379259353476508, 'recall': 0.9376154096817408, 'f1-score': 0.9371395696954526, 'support': 27619.0} |
| No log        | 12.0  | 492  | 0.2394          | {'precision': 0.8633828996282528, 'recall': 0.8906999041227229, 'f1-score': 0.8768286927796131, 'support': 1043.0}  | {'precision': 0.9488209014307527, 'recall': 0.9670317002881844, 'f1-score': 0.9578397510918277, 'support': 17350.0} | {'precision': 0.9363431151241535, 'recall': 0.8991979189247779, 'f1-score': 0.917394669910428, 'support': 9226.0}  | 0.9415   | {'precision': 0.9161823053943863, 'recall': 0.9189765077785618, 'f1-score': 0.9173543712606228, 'support': 27619.0} | {'precision': 0.941426285682728, 'recall': 0.9414895542923349, 'f1-score': 0.9412699675080908, 'support': 27619.0}  |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2