File size: 9,971 Bytes
55a8b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
datasets:
- essays_su_g
metrics:
- accuracy
model-index:
- name: longformer-simple
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: essays_su_g
      type: essays_su_g
      config: simple
      split: train[80%:100%]
      args: simple
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8421376588580325
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longformer-simple

This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4683
- Claim: {'precision': 0.5930310475765022, 'recall': 0.636996161228407, 'f1-score': 0.6142278773857722, 'support': 4168.0}
- Majorclaim: {'precision': 0.7712014134275619, 'recall': 0.8113382899628253, 'f1-score': 0.7907608695652174, 'support': 2152.0}
- O: {'precision': 0.9350634632819583, 'recall': 0.8943203988727509, 'f1-score': 0.9142382271468144, 'support': 9226.0}
- Premise: {'precision': 0.8799568607930978, 'recall': 0.8785720202103868, 'f1-score': 0.8792638952211216, 'support': 12073.0}
- Accuracy: 0.8421
- Macro avg: {'precision': 0.7948131962697801, 'recall': 0.8053067175685925, 'f1-score': 0.7996227173297313, 'support': 27619.0}
- Weighted avg: {'precision': 0.846590880936652, 'recall': 0.8421376588580325, 'f1-score': 0.8440542407367884, 'support': 27619.0}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Claim                                                                                                                | Majorclaim                                                                                                         | O                                                                                                                  | Premise                                                                                                             | Accuracy | Macro avg                                                                                                           | Weighted avg                                                                                                        |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
| No log        | 1.0   | 41   | 0.5650          | {'precision': 0.5066032752245113, 'recall': 0.23008637236084453, 'f1-score': 0.31644943078699883, 'support': 4168.0} | {'precision': 0.5405718701700154, 'recall': 0.650092936802974, 'f1-score': 0.5902953586497891, 'support': 2152.0}  | {'precision': 0.9117542823390431, 'recall': 0.8365488835898548, 'f1-score': 0.8725340568650726, 'support': 9226.0} | {'precision': 0.7800040891433244, 'recall': 0.9479831027913526, 'f1-score': 0.8558289089957376, 'support': 12073.0} | 0.7792   | {'precision': 0.6847333792192236, 'recall': 0.6661778238862565, 'f1-score': 0.6587769388243996, 'support': 27619.0} | {'precision': 0.7640996231879866, 'recall': 0.7792099641551106, 'f1-score': 0.7593214260573249, 'support': 27619.0} |
| No log        | 2.0   | 82   | 0.4458          | {'precision': 0.5965486462362393, 'recall': 0.4810460652591171, 'f1-score': 0.5326072519590915, 'support': 4168.0}   | {'precision': 0.7099605089951733, 'recall': 0.7518587360594795, 'f1-score': 0.7303091852854885, 'support': 2152.0} | {'precision': 0.9064716795809232, 'recall': 0.9002818122696726, 'f1-score': 0.9033661428027624, 'support': 9226.0} | {'precision': 0.848392634207241, 'recall': 0.9006046550153235, 'f1-score': 0.8737193137530637, 'support': 12073.0}  | 0.8256   | {'precision': 0.7653433672548942, 'recall': 0.7584478171508982, 'f1-score': 0.7600004734501016, 'support': 27619.0} | {'precision': 0.8190014758487952, 'recall': 0.8255910786053079, 'f1-score': 0.8209711322400842, 'support': 27619.0} |
| No log        | 3.0   | 123  | 0.4332          | {'precision': 0.5755813953488372, 'recall': 0.5700575815738963, 'f1-score': 0.5728061716489875, 'support': 4168.0}   | {'precision': 0.6984323432343235, 'recall': 0.7867100371747212, 'f1-score': 0.7399475524475525, 'support': 2152.0} | {'precision': 0.9506590881605999, 'recall': 0.8520485584218513, 'f1-score': 0.8986567590740212, 'support': 9226.0} | {'precision': 0.853180184403813, 'recall': 0.9044148099064027, 'f1-score': 0.8780507418278317, 'support': 12073.0}  | 0.8273   | {'precision': 0.7694632527868934, 'recall': 0.7783077467692179, 'f1-score': 0.7723653062495982, 'support': 27619.0} | {'precision': 0.8317924172537436, 'recall': 0.8272928056772512, 'f1-score': 0.8281088063146546, 'support': 27619.0} |
| No log        | 4.0   | 164  | 0.4213          | {'precision': 0.6149187998898982, 'recall': 0.5359884836852208, 'f1-score': 0.5727470837072169, 'support': 4168.0}   | {'precision': 0.7890625, 'recall': 0.7509293680297398, 'f1-score': 0.7695238095238095, 'support': 2152.0}          | {'precision': 0.90938406965495, 'recall': 0.9169737697810535, 'f1-score': 0.9131631496572938, 'support': 9226.0}   | {'precision': 0.8585674713098536, 'recall': 0.898533918661476, 'f1-score': 0.8780961631860126, 'support': 12073.0}  | 0.8385   | {'precision': 0.7929832102136755, 'recall': 0.7756063850393726, 'f1-score': 0.7833825515185833, 'support': 27619.0} | {'precision': 0.8333577090300708, 'recall': 0.8384807560013035, 'f1-score': 0.8352700416332903, 'support': 27619.0} |
| No log        | 5.0   | 205  | 0.4305          | {'precision': 0.5943820224719101, 'recall': 0.6345969289827256, 'f1-score': 0.613831515432815, 'support': 4168.0}    | {'precision': 0.7417763157894737, 'recall': 0.8382899628252788, 'f1-score': 0.7870855148342057, 'support': 2152.0} | {'precision': 0.9332355926468929, 'recall': 0.8969217429004986, 'f1-score': 0.9147183993809761, 'support': 9226.0} | {'precision': 0.8866048862679022, 'recall': 0.8716971755156133, 'f1-score': 0.8790878336048114, 'support': 12073.0} | 0.8417   | {'precision': 0.7889997042940448, 'recall': 0.8103764525560291, 'f1-score': 0.7986808158132019, 'support': 27619.0} | {'precision': 0.8467974680804694, 'recall': 0.8417393823092798, 'f1-score': 0.8437914896284063, 'support': 27619.0} |
| No log        | 6.0   | 246  | 0.4474          | {'precision': 0.6243768693918246, 'recall': 0.6010076775431862, 'f1-score': 0.6124694376528118, 'support': 4168.0}   | {'precision': 0.782648401826484, 'recall': 0.7964684014869888, 'f1-score': 0.7894979272224781, 'support': 2152.0}  | {'precision': 0.9337994812225104, 'recall': 0.897463689572946, 'f1-score': 0.9152710993201791, 'support': 9226.0}  | {'precision': 0.8685258964143426, 'recall': 0.9028410502774786, 'f1-score': 0.8853510945051374, 'support': 12073.0} | 0.8472   | {'precision': 0.8023376622137904, 'recall': 0.7994452047201499, 'f1-score': 0.8006473896751517, 'support': 27619.0} | {'precision': 0.8467942109969572, 'recall': 0.8472066331148846, 'f1-score': 0.8466963714040403, 'support': 27619.0} |
| No log        | 7.0   | 287  | 0.4659          | {'precision': 0.6118966357874208, 'recall': 0.6022072936660269, 'f1-score': 0.6070133010882709, 'support': 4168.0}   | {'precision': 0.7918010133578995, 'recall': 0.7987918215613383, 'f1-score': 0.7952810548230396, 'support': 2152.0} | {'precision': 0.9346397825101949, 'recall': 0.8943203988727509, 'f1-score': 0.9140356707654813, 'support': 9226.0} | {'precision': 0.8677104968844863, 'recall': 0.8996935310196306, 'f1-score': 0.8834126306372251, 'support': 12073.0} | 0.8451   | {'precision': 0.8015119821350003, 'recall': 0.7987532612799366, 'f1-score': 0.7999356643285043, 'support': 27619.0} | {'precision': 0.845548224810226, 'recall': 0.8451428364531663, 'f1-score': 0.845063545279722, 'support': 27619.0}   |
| No log        | 8.0   | 328  | 0.4683          | {'precision': 0.5930310475765022, 'recall': 0.636996161228407, 'f1-score': 0.6142278773857722, 'support': 4168.0}    | {'precision': 0.7712014134275619, 'recall': 0.8113382899628253, 'f1-score': 0.7907608695652174, 'support': 2152.0} | {'precision': 0.9350634632819583, 'recall': 0.8943203988727509, 'f1-score': 0.9142382271468144, 'support': 9226.0} | {'precision': 0.8799568607930978, 'recall': 0.8785720202103868, 'f1-score': 0.8792638952211216, 'support': 12073.0} | 0.8421   | {'precision': 0.7948131962697801, 'recall': 0.8053067175685925, 'f1-score': 0.7996227173297313, 'support': 27619.0} | {'precision': 0.846590880936652, 'recall': 0.8421376588580325, 'f1-score': 0.8440542407367884, 'support': 27619.0}  |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2