--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer datasets: - fancy_dataset metrics: - accuracy model-index: - name: longformer-one-step results: - task: name: Token Classification type: token-classification dataset: name: fancy_dataset type: fancy_dataset config: sep_tok split: test args: sep_tok metrics: - name: Accuracy type: accuracy value: 0.8691844007060312 --- # longformer-one-step This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3013 - Claim: {'precision': 0.5698178664353859, 'recall': 0.4524793388429752, 'f1-score': 0.5044145873320538, 'support': 4356.0} - Majorclaim: {'precision': 0.7584043030031377, 'recall': 0.775435380384968, 'f1-score': 0.7668252889191027, 'support': 2182.0} - O: {'precision': 0.9997360084477297, 'recall': 0.9971912577898709, 'f1-score': 0.9984620116887112, 'support': 11393.0} - Premise: {'precision': 0.8536961381330456, 'recall': 0.9155919312169312, 'f1-score': 0.8835613706170967, 'support': 12096.0} - Accuracy: 0.8692 - Macro avg: {'precision': 0.7954135790048247, 'recall': 0.7851744770586864, 'f1-score': 0.7883158146392412, 'support': 30027.0} - Weighted avg: {'precision': 0.8610006209893659, 'recall': 0.8691844007060312, 'f1-score': 0.8636719872446065, 'support': 30027.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 41 | 0.4523 | {'precision': 0.4538361508452536, 'recall': 0.16023875114784206, 'f1-score': 0.2368510349507974, 'support': 4356.0} | {'precision': 0.6438781852082038, 'recall': 0.4747937671860678, 'f1-score': 0.5465576365075178, 'support': 2182.0} | {'precision': 0.961874840791373, 'recall': 0.9942947423856754, 'f1-score': 0.9778161415623651, 'support': 11393.0} | {'precision': 0.7773290074819572, 'recall': 0.970568783068783, 'f1-score': 0.8632670318761719, 'support': 12096.0} | 0.8260 | {'precision': 0.7092295460816969, 'recall': 0.6499740109470921, 'f1-score': 0.656122961224213, 'support': 30027.0} | {'precision': 0.7907238221881672, 'recall': 0.8259899423851866, 'f1-score': 0.7928414157091711, 'support': 30027.0} | | No log | 2.0 | 82 | 0.3203 | {'precision': 0.5346471710108074, 'recall': 0.38613406795224975, 'f1-score': 0.4484137563316448, 'support': 4356.0} | {'precision': 0.8060538116591929, 'recall': 0.6590284142988084, 'f1-score': 0.7251638930912757, 'support': 2182.0} | {'precision': 0.9997357759379955, 'recall': 0.9963135258492056, 'f1-score': 0.9980217171495142, 'support': 11393.0} | {'precision': 0.8241286473113585, 'recall': 0.9363425925925926, 'f1-score': 0.8766593134409226, 'support': 12096.0} | 0.8591 | {'precision': 0.7911413514798384, 'recall': 0.7444546501732141, 'f1-score': 0.7620646700033393, 'support': 30027.0} | {'precision': 0.8474500385354251, 'recall': 0.8591267858926965, 'f1-score': 0.8495730647807515, 'support': 30027.0} | | No log | 3.0 | 123 | 0.3013 | {'precision': 0.5698178664353859, 'recall': 0.4524793388429752, 'f1-score': 0.5044145873320538, 'support': 4356.0} | {'precision': 0.7584043030031377, 'recall': 0.775435380384968, 'f1-score': 0.7668252889191027, 'support': 2182.0} | {'precision': 0.9997360084477297, 'recall': 0.9971912577898709, 'f1-score': 0.9984620116887112, 'support': 11393.0} | {'precision': 0.8536961381330456, 'recall': 0.9155919312169312, 'f1-score': 0.8835613706170967, 'support': 12096.0} | 0.8692 | {'precision': 0.7954135790048247, 'recall': 0.7851744770586864, 'f1-score': 0.7883158146392412, 'support': 30027.0} | {'precision': 0.8610006209893659, 'recall': 0.8691844007060312, 'f1-score': 0.8636719872446065, 'support': 30027.0} | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1