trainer: training complete at 2024-01-28 12:35:39.089322.
Browse files- README.md +16 -16
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,17 +32,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B-claim: {'precision':
|
37 |
- B-majorclaim: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0}
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision': 0.
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -71,11 +71,11 @@ The following hyperparameters were used during training:
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
75 |
-
|
76 |
-
| No log | 1.0 | 41 | 0.
|
77 |
-
| No log | 2.0 | 82 | 0.
|
78 |
-
| No log | 3.0 | 123 | 0.
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8069798272958544
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5164
|
36 |
+
- B-claim: {'precision': 0.5, 'recall': 0.01444043321299639, 'f1-score': 0.028070175438596492, 'support': 277.0}
|
37 |
- B-majorclaim: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0}
|
38 |
+
- B-premise: {'precision': 0.6012121212121212, 'recall': 0.7737909516380655, 'f1-score': 0.6766712141882674, 'support': 641.0}
|
39 |
+
- I-claim: {'precision': 0.5778401122019635, 'recall': 0.5050257416033341, 'f1-score': 0.5389848246991105, 'support': 4079.0}
|
40 |
+
- I-majorclaim: {'precision': 0.6294978252273626, 'recall': 0.7800097991180793, 'f1-score': 0.6967177242888402, 'support': 2041.0}
|
41 |
+
- I-premise: {'precision': 0.8417716308553552, 'recall': 0.8926233085988651, 'f1-score': 0.8664519955935939, 'support': 11455.0}
|
42 |
+
- O: {'precision': 0.9219015280135824, 'recall': 0.8781671159029649, 'f1-score': 0.8995030369961348, 'support': 9275.0}
|
43 |
+
- Accuracy: 0.8070
|
44 |
+
- Macro avg: {'precision': 0.581746173930055, 'recall': 0.549151050010615, 'f1-score': 0.5294855673149347, 'support': 27909.0}
|
45 |
+
- Weighted avg: {'precision': 0.8011330593153426, 'recall': 0.8069798272958544, 'f1-score': 0.8001053402048132, 'support': 27909.0}
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.7242 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.8028169014084507, 'recall': 0.08892355694227769, 'f1-score': 0.16011235955056177, 'support': 641.0} | {'precision': 0.43010291595197253, 'recall': 0.24589360137288552, 'f1-score': 0.31289970363437836, 'support': 4079.0} | {'precision': 0.6835106382978723, 'recall': 0.1259186673199412, 'f1-score': 0.2126603227141084, 'support': 2041.0} | {'precision': 0.7517079419299744, 'recall': 0.9221300742034046, 'f1-score': 0.8282432273493551, 'support': 11455.0} | {'precision': 0.7629536017331648, 'recall': 0.9112668463611859, 'f1-score': 0.8305409521937798, 'support': 9275.0} | 0.7285 | {'precision': 0.49015599990306213, 'recall': 0.3277332494570993, 'f1-score': 0.3349223664917405, 'support': 27909.0} | {'precision': 0.6933695141932649, 'recall': 0.7285105163209, 'f1-score': 0.6809195289383426, 'support': 27909.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.5451 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.638235294117647, 'recall': 0.6770670826833073, 'f1-score': 0.6570779712339135, 'support': 641.0} | {'precision': 0.5605615409729023, 'recall': 0.4209365040451091, 'f1-score': 0.48081769812377484, 'support': 4079.0} | {'precision': 0.6609442060085837, 'recall': 0.6036256736893679, 'f1-score': 0.6309859154929578, 'support': 2041.0} | {'precision': 0.8157935644333904, 'recall': 0.916281099956351, 'f1-score': 0.8631224045063938, 'support': 11455.0} | {'precision': 0.8817295464179737, 'recall': 0.8970350404312668, 'f1-score': 0.8893164448720005, 'support': 9275.0} | 0.7954 | {'precision': 0.5081805931357853, 'recall': 0.5021350572579146, 'f1-score': 0.5030457763184344, 'support': 27909.0} | {'precision': 0.7727823747619976, 'recall': 0.7954064996954388, 'f1-score': 0.7813164854898953, 'support': 27909.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.5164 | {'precision': 0.5, 'recall': 0.01444043321299639, 'f1-score': 0.028070175438596492, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6012121212121212, 'recall': 0.7737909516380655, 'f1-score': 0.6766712141882674, 'support': 641.0} | {'precision': 0.5778401122019635, 'recall': 0.5050257416033341, 'f1-score': 0.5389848246991105, 'support': 4079.0} | {'precision': 0.6294978252273626, 'recall': 0.7800097991180793, 'f1-score': 0.6967177242888402, 'support': 2041.0} | {'precision': 0.8417716308553552, 'recall': 0.8926233085988651, 'f1-score': 0.8664519955935939, 'support': 11455.0} | {'precision': 0.9219015280135824, 'recall': 0.8781671159029649, 'f1-score': 0.8995030369961348, 'support': 9275.0} | 0.8070 | {'precision': 0.581746173930055, 'recall': 0.549151050010615, 'f1-score': 0.5294855673149347, 'support': 27909.0} | {'precision': 0.8011330593153426, 'recall': 0.8069798272958544, 'f1-score': 0.8001053402048132, 'support': 27909.0} |
|
79 |
|
80 |
|
81 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592330980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd0b152b04957f2b0f66ca6789a614173447837debbcebedc2eb929341de7383
|
3 |
size 592330980
|