trainer: training complete at 2024-01-28 12:28:03.218291.
Browse files- README.md +37 -22
- model.safetensors +1 -1
README.md
CHANGED
@@ -3,11 +3,26 @@ license: apache-2.0
|
|
3 |
base_model: allenai/longformer-base-4096
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
- name: longformer-one-step
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -15,19 +30,19 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# longformer-one-step
|
17 |
|
18 |
-
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- B-claim: {'precision':
|
22 |
-
- B-majorclaim: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support':
|
23 |
-
- B-premise: {'precision': 0.
|
24 |
-
- I-claim: {'precision': 0.
|
25 |
-
- I-majorclaim: {'precision': 0.
|
26 |
-
- I-premise: {'precision': 0.
|
27 |
-
- O: {'precision': 0.
|
28 |
-
- Accuracy: 0.
|
29 |
-
- Macro avg: {'precision': 0.
|
30 |
-
- Weighted avg: {'precision': 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -56,16 +71,16 @@ The following hyperparameters were used during training:
|
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
60 |
-
|
61 |
-
| No log | 1.0 |
|
62 |
-
| No log | 2.0 |
|
63 |
-
| No log | 3.0 |
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
-
- Transformers 4.
|
69 |
-
- Pytorch 2.
|
70 |
-
- Datasets 2.
|
71 |
-
- Tokenizers 0.
|
|
|
3 |
base_model: allenai/longformer-base-4096
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- fancy_dataset
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: longformer-one-step
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Token Classification
|
15 |
+
type: token-classification
|
16 |
+
dataset:
|
17 |
+
name: fancy_dataset
|
18 |
+
type: fancy_dataset
|
19 |
+
config: full_labels
|
20 |
+
split: test
|
21 |
+
args: full_labels
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8056899208140743
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
30 |
|
31 |
# longformer-one-step
|
32 |
|
33 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5149
|
36 |
+
- B-claim: {'precision': 1.0, 'recall': 0.0036101083032490976, 'f1-score': 0.007194244604316546, 'support': 277.0}
|
37 |
+
- B-majorclaim: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0}
|
38 |
+
- B-premise: {'precision': 0.5939759036144578, 'recall': 0.7691107644305772, 'f1-score': 0.6702923181509177, 'support': 641.0}
|
39 |
+
- I-claim: {'precision': 0.5709936340990867, 'recall': 0.5057612159843099, 'f1-score': 0.5364014560582424, 'support': 4079.0}
|
40 |
+
- I-majorclaim: {'precision': 0.6075593084036992, 'recall': 0.7403233708966193, 'f1-score': 0.6674028268551236, 'support': 2041.0}
|
41 |
+
- I-premise: {'precision': 0.8469945355191257, 'recall': 0.8930597992143169, 'f1-score': 0.8694174138443888, 'support': 11455.0}
|
42 |
+
- O: {'precision': 0.92, 'recall': 0.8828032345013477, 'f1-score': 0.9010178817056397, 'support': 9275.0}
|
43 |
+
- Accuracy: 0.8057
|
44 |
+
- Macro avg: {'precision': 0.6485033402337671, 'recall': 0.5420954990472029, 'f1-score': 0.5216751630312327, 'support': 27909.0}
|
45 |
+
- Weighted avg: {'precision': 0.8048361654136865, 'recall': 0.8056899208140743, 'f1-score': 0.7989508122458809, 'support': 27909.0}
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:---------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.7274 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.78, 'recall': 0.060842433697347896, 'f1-score': 0.11287988422575977, 'support': 641.0} | {'precision': 0.36033007334963324, 'recall': 0.28904143172346164, 'f1-score': 0.320772683988573, 'support': 4079.0} | {'precision': 0.5909090909090909, 'recall': 0.012738853503184714, 'f1-score': 0.024940047961630695, 'support': 2041.0} | {'precision': 0.7395335962909141, 'recall': 0.9329550414666085, 'f1-score': 0.8250598316992201, 'support': 11455.0} | {'precision': 0.8197582243361078, 'recall': 0.8919676549865229, 'f1-score': 0.8543398564568596, 'support': 9275.0} | 0.7239 | {'precision': 0.47007585498367804, 'recall': 0.3125064879110179, 'f1-score': 0.30542747204743476, 'support': 27909.0} | {'precision': 0.6897569493700394, 'recall': 0.7239241821634598, 'f1-score': 0.6738597929850489, 'support': 27909.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.5478 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6131687242798354, 'recall': 0.6973478939157566, 'f1-score': 0.6525547445255474, 'support': 641.0} | {'precision': 0.553030303030303, 'recall': 0.4295170384898259, 'f1-score': 0.48351041810404305, 'support': 4079.0} | {'precision': 0.6469656992084433, 'recall': 0.600685938265556, 'f1-score': 0.6229674796747968, 'support': 2041.0} | {'precision': 0.8183098591549296, 'recall': 0.9129637712789175, 'f1-score': 0.8630493088508355, 'support': 11455.0} | {'precision': 0.8851879618721217, 'recall': 0.8911051212938005, 'f1-score': 0.8881366860090264, 'support': 9275.0} | 0.7936 | {'precision': 0.5023803639350904, 'recall': 0.5045171090348366, 'f1-score': 0.5014598053091784, 'support': 27909.0} | {'precision': 0.7722658115085478, 'recall': 0.7935791321795836, 'f1-score': 0.7805976856327196, 'support': 27909.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.5149 | {'precision': 1.0, 'recall': 0.0036101083032490976, 'f1-score': 0.007194244604316546, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.5939759036144578, 'recall': 0.7691107644305772, 'f1-score': 0.6702923181509177, 'support': 641.0} | {'precision': 0.5709936340990867, 'recall': 0.5057612159843099, 'f1-score': 0.5364014560582424, 'support': 4079.0} | {'precision': 0.6075593084036992, 'recall': 0.7403233708966193, 'f1-score': 0.6674028268551236, 'support': 2041.0} | {'precision': 0.8469945355191257, 'recall': 0.8930597992143169, 'f1-score': 0.8694174138443888, 'support': 11455.0} | {'precision': 0.92, 'recall': 0.8828032345013477, 'f1-score': 0.9010178817056397, 'support': 9275.0} | 0.8057 | {'precision': 0.6485033402337671, 'recall': 0.5420954990472029, 'f1-score': 0.5216751630312327, 'support': 27909.0} | {'precision': 0.8048361654136865, 'recall': 0.8056899208140743, 'f1-score': 0.7989508122458809, 'support': 27909.0} |
|
79 |
|
80 |
|
81 |
### Framework versions
|
82 |
|
83 |
+
- Transformers 4.37.1
|
84 |
+
- Pytorch 2.1.2+cu121
|
85 |
+
- Datasets 2.16.1
|
86 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592330980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b1e4d35674ddf16530c959254233ea38164751f68cd02d9fb573be1cace4b87
|
3 |
size 592330980
|