Theoreticallyhugo commited on
Commit
9d76f33
·
1 Parent(s): 6dfff15

trainer: training complete at 2023-11-27 14:10:49.177196.

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: longformer-one-step
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # longformer-one-step
17
+
18
+ This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.4163
21
+ - B-claim: {'precision': 0.5555555555555556, 'recall': 0.551948051948052, 'f1-score': 0.5537459283387622, 'support': 154.0}
22
+ - B-majorclaim: {'precision': 0.6285714285714286, 'recall': 0.6875, 'f1-score': 0.6567164179104478, 'support': 64.0}
23
+ - B-premise: {'precision': 0.7458677685950413, 'recall': 0.8414918414918415, 'f1-score': 0.7907995618838992, 'support': 429.0}
24
+ - I-claim: {'precision': 0.6674840608141246, 'recall': 0.6067766384306732, 'f1-score': 0.6356842596917328, 'support': 2243.0}
25
+ - I-majorclaim: {'precision': 0.7213656387665198, 'recall': 0.7511467889908257, 'f1-score': 0.7359550561797752, 'support': 872.0}
26
+ - I-premise: {'precision': 0.8961770096884001, 'recall': 0.9113300492610837, 'f1-score': 0.903690012542082, 'support': 7511.0}
27
+ - O: {'precision': 0.9139617607825701, 'recall': 0.910117334514058, 'f1-score': 0.9120354963948973, 'support': 4517.0}
28
+ - Accuracy: 0.8526
29
+ - Macro avg: {'precision': 0.7327118889676628, 'recall': 0.751472957805219, 'f1-score': 0.741232390420228, 'support': 15790.0}
30
+ - Weighted avg: {'precision': 0.8506339314975508, 'recall': 0.8525649145028499, 'f1-score': 0.8512623407634757, 'support': 15790.0}
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 2e-05
50
+ - train_batch_size: 8
51
+ - eval_batch_size: 8
52
+ - seed: 42
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 3
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
60
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
61
+ | No log | 1.0 | 196 | 0.4925 | {'precision': 0.4489795918367347, 'recall': 0.14285714285714285, 'f1-score': 0.21674876847290642, 'support': 154.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 64.0} | {'precision': 0.6521739130434783, 'recall': 0.8741258741258742, 'f1-score': 0.7470119521912351, 'support': 429.0} | {'precision': 0.6343843843843844, 'recall': 0.37672759696834596, 'f1-score': 0.4727272727272727, 'support': 2243.0} | {'precision': 0.6209944751381216, 'recall': 0.6444954128440367, 'f1-score': 0.6325267304445695, 'support': 872.0} | {'precision': 0.845458984375, 'recall': 0.92211423245906, 'f1-score': 0.8821244348213716, 'support': 7511.0} | {'precision': 0.8657378087397086, 'recall': 0.9079034757582466, 'f1-score': 0.8863194294359196, 'support': 4517.0} | 0.8126 | {'precision': 0.5811041653596325, 'recall': 0.5526033907161009, 'f1-score': 0.5482083697276107, 'support': 15790.0} | {'precision': 0.7963354614345164, 'recall': 0.8126029132362255, 'f1-score': 0.7976491141364899, 'support': 15790.0} |
62
+ | No log | 2.0 | 392 | 0.4278 | {'precision': 0.5454545454545454, 'recall': 0.5064935064935064, 'f1-score': 0.5252525252525252, 'support': 154.0} | {'precision': 0.7090909090909091, 'recall': 0.609375, 'f1-score': 0.6554621848739497, 'support': 64.0} | {'precision': 0.6920222634508348, 'recall': 0.8694638694638694, 'f1-score': 0.7706611570247933, 'support': 429.0} | {'precision': 0.6465288818229995, 'recall': 0.5439144003566652, 'f1-score': 0.5907990314769976, 'support': 2243.0} | {'precision': 0.7232558139534884, 'recall': 0.713302752293578, 'f1-score': 0.7182448036951501, 'support': 872.0} | {'precision': 0.8695761223977928, 'recall': 0.9231793369724404, 'f1-score': 0.8955763642234421, 'support': 7511.0} | {'precision': 0.9275161588180979, 'recall': 0.8895284480850122, 'f1-score': 0.9081252118883489, 'support': 4517.0} | 0.8413 | {'precision': 0.7304920992840954, 'recall': 0.7221796162378674, 'f1-score': 0.7234458969193153, 'support': 15790.0} | {'precision': 0.8377504411405843, 'recall': 0.8412919569347689, 'f1-score': 0.8381000288341659, 'support': 15790.0} |
63
+ | 0.598 | 3.0 | 588 | 0.4163 | {'precision': 0.5555555555555556, 'recall': 0.551948051948052, 'f1-score': 0.5537459283387622, 'support': 154.0} | {'precision': 0.6285714285714286, 'recall': 0.6875, 'f1-score': 0.6567164179104478, 'support': 64.0} | {'precision': 0.7458677685950413, 'recall': 0.8414918414918415, 'f1-score': 0.7907995618838992, 'support': 429.0} | {'precision': 0.6674840608141246, 'recall': 0.6067766384306732, 'f1-score': 0.6356842596917328, 'support': 2243.0} | {'precision': 0.7213656387665198, 'recall': 0.7511467889908257, 'f1-score': 0.7359550561797752, 'support': 872.0} | {'precision': 0.8961770096884001, 'recall': 0.9113300492610837, 'f1-score': 0.903690012542082, 'support': 7511.0} | {'precision': 0.9139617607825701, 'recall': 0.910117334514058, 'f1-score': 0.9120354963948973, 'support': 4517.0} | 0.8526 | {'precision': 0.7327118889676628, 'recall': 0.751472957805219, 'f1-score': 0.741232390420228, 'support': 15790.0} | {'precision': 0.8506339314975508, 'recall': 0.8525649145028499, 'f1-score': 0.8512623407634757, 'support': 15790.0} |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.33.0
69
+ - Pytorch 2.0.1+cu118
70
+ - Datasets 2.14.4
71
+ - Tokenizers 0.13.3