--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-ner-essays-classify_span results: [] --- # bert-ner-essays-classify_span This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6855 - Claim: {'precision': 0.4016393442622951, 'recall': 0.3402777777777778, 'f1-score': 0.3684210526315789, 'support': 144.0} - Majorclaim: {'precision': 0.5882352941176471, 'recall': 0.5555555555555556, 'f1-score': 0.5714285714285715, 'support': 72.0} - Premise: {'precision': 0.7947494033412887, 'recall': 0.8473282442748091, 'f1-score': 0.8201970443349754, 'support': 393.0} - Accuracy: 0.6929 - Macro avg: {'precision': 0.5948746805737436, 'recall': 0.5810538592027141, 'f1-score': 0.5866822227983753, 'support': 609.0} - Weighted avg: {'precision': 0.6773818099562685, 'recall': 0.6929392446633826, 'f1-score': 0.6839621135393265, 'support': 609.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | Premise | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------:|:-----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 267 | 0.6910 | {'precision': 0.40860215053763443, 'recall': 0.2638888888888889, 'f1-score': 0.3206751054852321, 'support': 144.0} | {'precision': 0.625, 'recall': 0.3472222222222222, 'f1-score': 0.44642857142857145, 'support': 72.0} | {'precision': 0.7521008403361344, 'recall': 0.910941475826972, 'f1-score': 0.8239355581127733, 'support': 393.0} | 0.6913 | {'precision': 0.5952343302912563, 'recall': 0.5073508623126944, 'f1-score': 0.5303464116755255, 'support': 609.0} | {'precision': 0.6558527749253206, 'recall': 0.6912972085385879, 'f1-score': 0.66030664478005, 'support': 609.0} | | 0.7234 | 2.0 | 534 | 0.6855 | {'precision': 0.4016393442622951, 'recall': 0.3402777777777778, 'f1-score': 0.3684210526315789, 'support': 144.0} | {'precision': 0.5882352941176471, 'recall': 0.5555555555555556, 'f1-score': 0.5714285714285715, 'support': 72.0} | {'precision': 0.7947494033412887, 'recall': 0.8473282442748091, 'f1-score': 0.8201970443349754, 'support': 393.0} | 0.6929 | {'precision': 0.5948746805737436, 'recall': 0.5810538592027141, 'f1-score': 0.5866822227983753, 'support': 609.0} | {'precision': 0.6773818099562685, 'recall': 0.6929392446633826, 'f1-score': 0.6839621135393265, 'support': 609.0} | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3