Theoreticallyhugo commited on
Commit
e3dc3fb
1 Parent(s): 319c564

trainer: training complete at 2023-11-14 14:01:39.049676.

Browse files
Files changed (2) hide show
  1. README.md +12 -12
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- license: apache-2.0
3
- base_model: bert-base-cased
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -15,15 +15,15 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # bert-ner-essays-classify_span
17
 
18
- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6855
21
- - Claim: {'precision': 0.4016393442622951, 'recall': 0.3402777777777778, 'f1-score': 0.3684210526315789, 'support': 144.0}
22
- - Majorclaim: {'precision': 0.5882352941176471, 'recall': 0.5555555555555556, 'f1-score': 0.5714285714285715, 'support': 72.0}
23
- - Premise: {'precision': 0.7947494033412887, 'recall': 0.8473282442748091, 'f1-score': 0.8201970443349754, 'support': 393.0}
24
- - Accuracy: 0.6929
25
- - Macro avg: {'precision': 0.5948746805737436, 'recall': 0.5810538592027141, 'f1-score': 0.5866822227983753, 'support': 609.0}
26
- - Weighted avg: {'precision': 0.6773818099562685, 'recall': 0.6929392446633826, 'f1-score': 0.6839621135393265, 'support': 609.0}
27
 
28
  ## Model description
29
 
@@ -54,8 +54,8 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | Premise | Accuracy | Macro avg | Weighted avg |
56
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------:|:-----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|
57
- | No log | 1.0 | 267 | 0.6910 | {'precision': 0.40860215053763443, 'recall': 0.2638888888888889, 'f1-score': 0.3206751054852321, 'support': 144.0} | {'precision': 0.625, 'recall': 0.3472222222222222, 'f1-score': 0.44642857142857145, 'support': 72.0} | {'precision': 0.7521008403361344, 'recall': 0.910941475826972, 'f1-score': 0.8239355581127733, 'support': 393.0} | 0.6913 | {'precision': 0.5952343302912563, 'recall': 0.5073508623126944, 'f1-score': 0.5303464116755255, 'support': 609.0} | {'precision': 0.6558527749253206, 'recall': 0.6912972085385879, 'f1-score': 0.66030664478005, 'support': 609.0} |
58
- | 0.7234 | 2.0 | 534 | 0.6855 | {'precision': 0.4016393442622951, 'recall': 0.3402777777777778, 'f1-score': 0.3684210526315789, 'support': 144.0} | {'precision': 0.5882352941176471, 'recall': 0.5555555555555556, 'f1-score': 0.5714285714285715, 'support': 72.0} | {'precision': 0.7947494033412887, 'recall': 0.8473282442748091, 'f1-score': 0.8201970443349754, 'support': 393.0} | 0.6929 | {'precision': 0.5948746805737436, 'recall': 0.5810538592027141, 'f1-score': 0.5866822227983753, 'support': 609.0} | {'precision': 0.6773818099562685, 'recall': 0.6929392446633826, 'f1-score': 0.6839621135393265, 'support': 609.0} |
59
 
60
 
61
  ### Framework versions
 
1
  ---
2
+ license: mit
3
+ base_model: roberta-base
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
15
 
16
  # bert-ner-essays-classify_span
17
 
18
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.6725
21
+ - Claim: {'precision': 0.4435483870967742, 'recall': 0.3819444444444444, 'f1-score': 0.4104477611940298, 'support': 144.0}
22
+ - Majorclaim: {'precision': 0.6166666666666667, 'recall': 0.5138888888888888, 'f1-score': 0.5606060606060607, 'support': 72.0}
23
+ - Premise: {'precision': 0.7976470588235294, 'recall': 0.8625954198473282, 'f1-score': 0.8288508557457213, 'support': 393.0}
24
+ - Accuracy: 0.7077
25
+ - Macro avg: {'precision': 0.6192873708623234, 'recall': 0.5861429177268872, 'f1-score': 0.5999682258486039, 'support': 609.0}
26
+ - Weighted avg: {'precision': 0.6925225974705789, 'recall': 0.7077175697865353, 'f1-score': 0.6982044339632925, 'support': 609.0}
27
 
28
  ## Model description
29
 
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | Premise | Accuracy | Macro avg | Weighted avg |
56
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------:|:-----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|
57
+ | No log | 1.0 | 267 | 0.6970 | {'precision': 0.4307692307692308, 'recall': 0.19444444444444445, 'f1-score': 0.2679425837320574, 'support': 144.0} | {'precision': 0.5774647887323944, 'recall': 0.5694444444444444, 'f1-score': 0.5734265734265734, 'support': 72.0} | {'precision': 0.758985200845666, 'recall': 0.9134860050890585, 'f1-score': 0.8290993071593533, 'support': 393.0} | 0.7028 | {'precision': 0.589073073449097, 'recall': 0.5591249646593158, 'f1-score': 0.556822821439328, 'support': 609.0} | {'precision': 0.6599169424496689, 'recall': 0.7027914614121511, 'f1-score': 0.6661846848239006, 'support': 609.0} |
58
+ | 0.7281 | 2.0 | 534 | 0.6725 | {'precision': 0.4435483870967742, 'recall': 0.3819444444444444, 'f1-score': 0.4104477611940298, 'support': 144.0} | {'precision': 0.6166666666666667, 'recall': 0.5138888888888888, 'f1-score': 0.5606060606060607, 'support': 72.0} | {'precision': 0.7976470588235294, 'recall': 0.8625954198473282, 'f1-score': 0.8288508557457213, 'support': 393.0} | 0.7077 | {'precision': 0.6192873708623234, 'recall': 0.5861429177268872, 'f1-score': 0.5999682258486039, 'support': 609.0} | {'precision': 0.6925225974705789, 'recall': 0.7077175697865353, 'f1-score': 0.6982044339632925, 'support': 609.0} |
59
 
60
 
61
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ccf836d0cc8b047d1cbaafafcf3db6a4228afe63c9958ef25366905d2ce2032
3
  size 498660721
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:141db8873b24ffb1495524ae3daa784da14c6ffd020875899290c7c1e14a0ce5
3
  size 498660721