Commit
·
9b492fa
1
Parent(s):
11f8fd6
trainer: training complete at 2023-11-14 14:08:14.362464.
Browse files
README.md
CHANGED
@@ -17,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Claim: {'precision': 0.
|
22 |
-
- Majorclaim: {'precision': 0.
|
23 |
-
- Premise: {'precision': 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Macro avg: {'precision': 0.
|
26 |
-
- Weighted avg: {'precision': 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -48,15 +48,14 @@ The following hyperparameters were used during training:
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step | Validation Loss | Claim
|
56 |
-
|
57 |
-
| No log | 1.0 | 267 | 0.
|
58 |
-
| 0.
|
59 |
-
| 0.7262 | 3.0 | 801 | 0.7163 | {'precision': 0.41496598639455784, 'recall': 0.4236111111111111, 'f1-score': 0.41924398625429554, 'support': 144.0} | {'precision': 0.6216216216216216, 'recall': 0.6388888888888888, 'f1-score': 0.6301369863013699, 'support': 72.0} | {'precision': 0.8118556701030928, 'recall': 0.8015267175572519, 'f1-score': 0.8066581306017925, 'support': 393.0} | 0.6929 | {'precision': 0.6161477593730907, 'recall': 0.6213422391857506, 'f1-score': 0.618679701052486, 'support': 609.0} | {'precision': 0.695519108617551, 'recall': 0.6929392446633826, 'f1-score': 0.6941833207895264, 'support': 609.0} |
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6725
|
21 |
+
- Claim: {'precision': 0.4435483870967742, 'recall': 0.3819444444444444, 'f1-score': 0.4104477611940298, 'support': 144.0}
|
22 |
+
- Majorclaim: {'precision': 0.6166666666666667, 'recall': 0.5138888888888888, 'f1-score': 0.5606060606060607, 'support': 72.0}
|
23 |
+
- Premise: {'precision': 0.7976470588235294, 'recall': 0.8625954198473282, 'f1-score': 0.8288508557457213, 'support': 393.0}
|
24 |
+
- Accuracy: 0.7077
|
25 |
+
- Macro avg: {'precision': 0.6192873708623234, 'recall': 0.5861429177268872, 'f1-score': 0.5999682258486039, 'support': 609.0}
|
26 |
+
- Weighted avg: {'precision': 0.6925225974705789, 'recall': 0.7077175697865353, 'f1-score': 0.6982044339632925, 'support': 609.0}
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 2
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | Premise | Accuracy | Macro avg | Weighted avg |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------:|:-----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|
|
57 |
+
| No log | 1.0 | 267 | 0.6970 | {'precision': 0.4307692307692308, 'recall': 0.19444444444444445, 'f1-score': 0.2679425837320574, 'support': 144.0} | {'precision': 0.5774647887323944, 'recall': 0.5694444444444444, 'f1-score': 0.5734265734265734, 'support': 72.0} | {'precision': 0.758985200845666, 'recall': 0.9134860050890585, 'f1-score': 0.8290993071593533, 'support': 393.0} | 0.7028 | {'precision': 0.589073073449097, 'recall': 0.5591249646593158, 'f1-score': 0.556822821439328, 'support': 609.0} | {'precision': 0.6599169424496689, 'recall': 0.7027914614121511, 'f1-score': 0.6661846848239006, 'support': 609.0} |
|
58 |
+
| 0.7281 | 2.0 | 534 | 0.6725 | {'precision': 0.4435483870967742, 'recall': 0.3819444444444444, 'f1-score': 0.4104477611940298, 'support': 144.0} | {'precision': 0.6166666666666667, 'recall': 0.5138888888888888, 'f1-score': 0.5606060606060607, 'support': 72.0} | {'precision': 0.7976470588235294, 'recall': 0.8625954198473282, 'f1-score': 0.8288508557457213, 'support': 393.0} | 0.7077 | {'precision': 0.6192873708623234, 'recall': 0.5861429177268872, 'f1-score': 0.5999682258486039, 'support': 609.0} | {'precision': 0.6925225974705789, 'recall': 0.7077175697865353, 'f1-score': 0.6982044339632925, 'support': 609.0} |
|
|
|
59 |
|
60 |
|
61 |
### Framework versions
|