TheBloke commited on
Commit
5aed504
1 Parent(s): 783a242

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +437 -0
README.md ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: uukuguy/speechless-code-mistral-7b-v1.0
3
+ datasets:
4
+ - jondurbin/airoboros-2.2
5
+ - Open-Orca/OpenOrca
6
+ - garage-bAInd/Open-Platypus
7
+ - WizardLM/WizardLM_evol_instruct_V2_196k
8
+ - TokenBender/python_eval_instruct_51k
9
+ inference: false
10
+ language:
11
+ - en
12
+ library_name: transformers
13
+ license: llama2
14
+ model-index:
15
+ - name: SpeechlessCoder
16
+ results:
17
+ - dataset:
18
+ name: HumanEval
19
+ type: openai_humaneval
20
+ metrics:
21
+ - name: pass@1
22
+ type: pass@1
23
+ value: 0.0
24
+ verified: false
25
+ task:
26
+ type: text-generation
27
+ model_creator: Jiangwen Su
28
+ model_name: Speechless Code Mistral 7B v1.0
29
+ model_type: mistral
30
+ pipeline_tag: text-generation
31
+ prompt_template: '{prompt}
32
+
33
+ '
34
+ quantized_by: TheBloke
35
+ tags:
36
+ - llama-2
37
+ - code
38
+ ---
39
+
40
+ <!-- header start -->
41
+ <!-- 200823 -->
42
+ <div style="width: auto; margin-left: auto; margin-right: auto">
43
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
44
+ </div>
45
+ <div style="display: flex; justify-content: space-between; width: 100%;">
46
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
47
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
48
+ </div>
49
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
50
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
51
+ </div>
52
+ </div>
53
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
54
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
55
+ <!-- header end -->
56
+
57
+ # Speechless Code Mistral 7B v1.0 - GPTQ
58
+ - Model creator: [Jiangwen Su](https://huggingface.co/uukuguy)
59
+ - Original model: [Speechless Code Mistral 7B v1.0](https://huggingface.co/uukuguy/speechless-code-mistral-7b-v1.0)
60
+
61
+ <!-- description start -->
62
+ ## Description
63
+
64
+ This repo contains GPTQ model files for [Jiangwen Su's Speechless Code Mistral 7B v1.0](https://huggingface.co/uukuguy/speechless-code-mistral-7b-v1.0).
65
+
66
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
67
+
68
+ <!-- description end -->
69
+ <!-- repositories-available start -->
70
+ ## Repositories available
71
+
72
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-AWQ)
73
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ)
74
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF)
75
+ * [Jiangwen Su's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/uukuguy/speechless-code-mistral-7b-v1.0)
76
+ <!-- repositories-available end -->
77
+
78
+ <!-- prompt-template start -->
79
+ ## Prompt template: Unknown
80
+
81
+ ```
82
+ {prompt}
83
+
84
+ ```
85
+
86
+ <!-- prompt-template end -->
87
+
88
+
89
+ <!-- README_GPTQ.md-provided-files start -->
90
+ ## Provided files, and GPTQ parameters
91
+
92
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
93
+
94
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
95
+
96
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
97
+
98
+ <details>
99
+ <summary>Explanation of GPTQ parameters</summary>
100
+
101
+ - Bits: The bit size of the quantised model.
102
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
103
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
104
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
105
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
106
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
107
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
108
+
109
+ </details>
110
+
111
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
112
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
113
+ | [main](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
114
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
115
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
116
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
117
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
118
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
119
+
120
+ <!-- README_GPTQ.md-provided-files end -->
121
+
122
+ <!-- README_GPTQ.md-download-from-branches start -->
123
+ ## How to download, including from branches
124
+
125
+ ### In text-generation-webui
126
+
127
+ To download from the `main` branch, enter `TheBloke/speechless-code-mistral-7B-v1.0-GPTQ` in the "Download model" box.
128
+
129
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/speechless-code-mistral-7B-v1.0-GPTQ:gptq-4bit-32g-actorder_True`
130
+
131
+ ### From the command line
132
+
133
+ I recommend using the `huggingface-hub` Python library:
134
+
135
+ ```shell
136
+ pip3 install huggingface-hub
137
+ ```
138
+
139
+ To download the `main` branch to a folder called `speechless-code-mistral-7B-v1.0-GPTQ`:
140
+
141
+ ```shell
142
+ mkdir speechless-code-mistral-7B-v1.0-GPTQ
143
+ huggingface-cli download TheBloke/speechless-code-mistral-7B-v1.0-GPTQ --local-dir speechless-code-mistral-7B-v1.0-GPTQ --local-dir-use-symlinks False
144
+ ```
145
+
146
+ To download from a different branch, add the `--revision` parameter:
147
+
148
+ ```shell
149
+ mkdir speechless-code-mistral-7B-v1.0-GPTQ
150
+ huggingface-cli download TheBloke/speechless-code-mistral-7B-v1.0-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir speechless-code-mistral-7B-v1.0-GPTQ --local-dir-use-symlinks False
151
+ ```
152
+
153
+ <details>
154
+ <summary>More advanced huggingface-cli download usage</summary>
155
+
156
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Huggingface cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
157
+
158
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
159
+
160
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
161
+
162
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
163
+
164
+ ```shell
165
+ pip3 install hf_transfer
166
+ ```
167
+
168
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
169
+
170
+ ```shell
171
+ mkdir speechless-code-mistral-7B-v1.0-GPTQ
172
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/speechless-code-mistral-7B-v1.0-GPTQ --local-dir speechless-code-mistral-7B-v1.0-GPTQ --local-dir-use-symlinks False
173
+ ```
174
+
175
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
176
+ </details>
177
+
178
+ ### With `git` (**not** recommended)
179
+
180
+ To clone a specific branch with `git`, use a command like this:
181
+
182
+ ```shell
183
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ
184
+ ```
185
+
186
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
187
+
188
+ <!-- README_GPTQ.md-download-from-branches end -->
189
+ <!-- README_GPTQ.md-text-generation-webui start -->
190
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
191
+
192
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
193
+
194
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
195
+
196
+ 1. Click the **Model tab**.
197
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/speechless-code-mistral-7B-v1.0-GPTQ`.
198
+ - To download from a specific branch, enter for example `TheBloke/speechless-code-mistral-7B-v1.0-GPTQ:gptq-4bit-32g-actorder_True`
199
+ - see Provided Files above for the list of branches for each option.
200
+ 3. Click **Download**.
201
+ 4. The model will start downloading. Once it's finished it will say "Done".
202
+ 5. In the top left, click the refresh icon next to **Model**.
203
+ 6. In the **Model** dropdown, choose the model you just downloaded: `speechless-code-mistral-7B-v1.0-GPTQ`
204
+ 7. The model will automatically load, and is now ready for use!
205
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
206
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
207
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
208
+
209
+ <!-- README_GPTQ.md-text-generation-webui end -->
210
+
211
+ <!-- README_GPTQ.md-use-from-tgi start -->
212
+ ## Serving this model from Text Generation Inference (TGI)
213
+
214
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
215
+
216
+ Example Docker parameters:
217
+
218
+ ```shell
219
+ --model-id TheBloke/speechless-code-mistral-7B-v1.0-GPTQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
220
+ ```
221
+
222
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
223
+
224
+ ```shell
225
+ pip3 install huggingface-hub
226
+ ```
227
+
228
+ ```python
229
+ from huggingface_hub import InferenceClient
230
+
231
+ endpoint_url = "https://your-endpoint-url-here"
232
+
233
+ prompt = "Tell me about AI"
234
+ prompt_template=f'''{prompt}
235
+ '''
236
+
237
+ client = InferenceClient(endpoint_url)
238
+ response = client.text_generation(prompt,
239
+ max_new_tokens=128,
240
+ do_sample=True,
241
+ temperature=0.7,
242
+ top_p=0.95,
243
+ top_k=40,
244
+ repetition_penalty=1.1)
245
+
246
+ print(f"Model output: {response}")
247
+ ```
248
+ <!-- README_GPTQ.md-use-from-tgi end -->
249
+ <!-- README_GPTQ.md-use-from-python start -->
250
+ ## How to use this GPTQ model from Python code
251
+
252
+ ### Install the necessary packages
253
+
254
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
255
+
256
+ ```shell
257
+ pip3 install transformers optimum
258
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
259
+ ```
260
+
261
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
262
+
263
+ ```shell
264
+ pip3 uninstall -y auto-gptq
265
+ git clone https://github.com/PanQiWei/AutoGPTQ
266
+ cd AutoGPTQ
267
+ git checkout v0.4.2
268
+ pip3 install .
269
+ ```
270
+
271
+ ### You can then use the following code
272
+
273
+ ```python
274
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
275
+
276
+ model_name_or_path = "TheBloke/speechless-code-mistral-7B-v1.0-GPTQ"
277
+ # To use a different branch, change revision
278
+ # For example: revision="gptq-4bit-32g-actorder_True"
279
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
280
+ device_map="auto",
281
+ trust_remote_code=False,
282
+ revision="main")
283
+
284
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
285
+
286
+ prompt = "Tell me about AI"
287
+ prompt_template=f'''{prompt}
288
+ '''
289
+
290
+ print("\n\n*** Generate:")
291
+
292
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
293
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
294
+ print(tokenizer.decode(output[0]))
295
+
296
+ # Inference can also be done using transformers' pipeline
297
+
298
+ print("*** Pipeline:")
299
+ pipe = pipeline(
300
+ "text-generation",
301
+ model=model,
302
+ tokenizer=tokenizer,
303
+ max_new_tokens=512,
304
+ do_sample=True,
305
+ temperature=0.7,
306
+ top_p=0.95,
307
+ top_k=40,
308
+ repetition_penalty=1.1
309
+ )
310
+
311
+ print(pipe(prompt_template)[0]['generated_text'])
312
+ ```
313
+ <!-- README_GPTQ.md-use-from-python end -->
314
+
315
+ <!-- README_GPTQ.md-compatibility start -->
316
+ ## Compatibility
317
+
318
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
319
+
320
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
321
+
322
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
323
+ <!-- README_GPTQ.md-compatibility end -->
324
+
325
+ <!-- footer start -->
326
+ <!-- 200823 -->
327
+ ## Discord
328
+
329
+ For further support, and discussions on these models and AI in general, join us at:
330
+
331
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
332
+
333
+ ## Thanks, and how to contribute
334
+
335
+ Thanks to the [chirper.ai](https://chirper.ai) team!
336
+
337
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
338
+
339
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
340
+
341
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
342
+
343
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
344
+
345
+ * Patreon: https://patreon.com/TheBlokeAI
346
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
347
+
348
+ **Special thanks to**: Aemon Algiz.
349
+
350
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
351
+
352
+
353
+ Thank you to all my generous patrons and donaters!
354
+
355
+ And thank you again to a16z for their generous grant.
356
+
357
+ <!-- footer end -->
358
+
359
+ # Original model card: Jiangwen Su's Speechless Code Mistral 7B v1.0
360
+
361
+
362
+ <p><h1> speechless-code-mistral-7b-v1.0 </h1></p>
363
+
364
+ Use the following dataset to fine-tune mistralai/Mistral-7B-v0.1 in order to improve the model's reasoning and planning abilities.
365
+
366
+ Total 201,981 samples.
367
+ - jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
368
+ - Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
369
+ - garage-bAInd/Open-Platypus: 100%, 24,926 samples.
370
+ - WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
371
+ - TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples
372
+ - Spider: 8,659 samples
373
+
374
+
375
+ | | |
376
+ |------ | ------ |
377
+ | lr | 2e-4 |
378
+ | lr_scheduler_type | cosine |
379
+ | weight_decay | 0.0 |
380
+ | optim | paged_adamw_8bit |
381
+ | flash_attention | True |
382
+ | rerope | False |
383
+ | max_new_tokens | 4096 |
384
+ | num_train_epochs | 2 |
385
+ | bits | 4 |
386
+ | lora_r | 64 |
387
+ | lora_alpha | 16 |
388
+ | lora_dropout | 0.05 |
389
+ | double_quant | True |
390
+ | quant_type | nf4 |
391
+ | dataset_format | airoboros |
392
+ | mini_batch_size | 2 |
393
+ | grandient_accumulation_steps | 32 |
394
+ | bf16 | True |
395
+
396
+ A40-48G x 2
397
+
398
+ | | |
399
+ |------ | ------ |
400
+ | epoch | 2.0 |
401
+ | etrain_loss | 0.5 |
402
+ | etrain_runtime | 1 day, 10:25:26.77 |
403
+ | etrain_samples_per_second | 3.194 |
404
+ | etrain_steps_per_second | 0.025 |
405
+ | eeval_loss | 0.5146 |
406
+ | eeval_runtime | 0:00:25.04 |
407
+ | eeval_samples_per_second | 7.985 |
408
+ | eeval_steps_per_second | |
409
+
410
+ | Metric | Value |
411
+ | --- | --- |
412
+ | humaneval-python ||
413
+
414
+ [Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)
415
+
416
+ CodeLlama-34B-Python: 53.29
417
+
418
+ CodeLlama-34B-Instruct: 50.79
419
+
420
+ CodeLlama-13B-Instruct: 50.6
421
+
422
+ CodeLlama-34B: 45.11
423
+
424
+ CodeLlama-13B-Python: 42.89
425
+
426
+ CodeLlama-13B: 35.07
427
+
428
+ [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
429
+ | Metric | Value |
430
+ | --- | --- |
431
+ | ARC | |
432
+ | HellaSwag | |
433
+ | MMLU | |
434
+ | TruthfulQA | |
435
+ | Average | |
436
+
437
+