TheBloke commited on
Commit
962de16
·
1 Parent(s): 7c1ad26

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +314 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: llama2
4
+ model_creator: OpenChat
5
+ model_link: https://huggingface.co/openchat/openchat_v3.2_super
6
+ model_name: OpenChat v3.2 Super
7
+ model_type: llama
8
+ quantized_by: TheBloke
9
+ ---
10
+
11
+ <!-- header start -->
12
+ <!-- 200823 -->
13
+ <div style="width: auto; margin-left: auto; margin-right: auto">
14
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
15
+ </div>
16
+ <div style="display: flex; justify-content: space-between; width: 100%;">
17
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
18
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
19
+ </div>
20
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
21
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
22
+ </div>
23
+ </div>
24
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
25
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
26
+ <!-- header end -->
27
+
28
+ # OpenChat v3.2 Super - GGUF
29
+ - Model creator: [OpenChat](https://huggingface.co/openchat)
30
+ - Original model: [OpenChat v3.2 Super](https://huggingface.co/openchat/openchat_v3.2_super)
31
+
32
+ ## Description
33
+
34
+ This repo contains GGUF format model files for [OpenChat's OpenChat v3.2 Super](https://huggingface.co/openchat/openchat_v3.2_super).
35
+
36
+ <!-- README_GGUF.md-about-gguf start -->
37
+ ### About GGUF
38
+
39
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
40
+
41
+ The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
42
+
43
+ Here are a list of clients and libraries that are known to support GGUF:
44
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp).
45
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
46
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
47
+ * [LM Studio](https://lmstudio.ai/), version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
48
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), should now work, choose the `c_transformers` backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
49
+ * [ctransformers](https://github.com/marella/ctransformers), now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
50
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
51
+ * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
52
+
53
+ <!-- README_GGUF.md-about-gguf end -->
54
+ <!-- repositories-available start -->
55
+ ## Repositories available
56
+
57
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/openchat_v3.2_super-GPTQ)
58
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF)
59
+ * [OpenChat's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openchat/openchat_v3.2_super)
60
+ <!-- repositories-available end -->
61
+
62
+ <!-- prompt-template start -->
63
+ ## Prompt template: OpenChat
64
+
65
+ ```
66
+ GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
67
+
68
+ ```
69
+
70
+ <!-- prompt-template end -->
71
+ <!-- compatibility_gguf start -->
72
+ ## Compatibility
73
+
74
+ These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
75
+
76
+ They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
77
+
78
+ ## Explanation of quantisation methods
79
+ <details>
80
+ <summary>Click to see details</summary>
81
+
82
+ The new methods available are:
83
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
84
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
85
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
86
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
87
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
88
+
89
+ Refer to the Provided Files table below to see what files use which methods, and how.
90
+ </details>
91
+ <!-- compatibility_gguf end -->
92
+
93
+ <!-- README_GGUF.md-provided-files start -->
94
+ ## Provided files
95
+
96
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
97
+ | ---- | ---- | ---- | ---- | ---- | ----- |
98
+ | [openchat_v3.2_super.Q2_K.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
99
+ | [openchat_v3.2_super.Q3_K_S.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
100
+ | [openchat_v3.2_super.Q3_K_M.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
101
+ | [openchat_v3.2_super.Q3_K_L.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
102
+ | [openchat_v3.2_super.Q4_0.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
103
+ | [openchat_v3.2_super.Q4_K_S.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
104
+ | [openchat_v3.2_super.Q4_K_M.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
105
+ | [openchat_v3.2_super.Q5_0.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
106
+ | [openchat_v3.2_super.Q5_K_S.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
107
+ | [openchat_v3.2_super.Q5_K_M.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
108
+ | [openchat_v3.2_super.Q6_K.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
109
+ | [openchat_v3.2_super.Q8_0.gguf](https://huggingface.co/TheBloke/openchat_v3.2_super-GGUF/blob/main/openchat_v3.2_super.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
110
+
111
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
112
+
113
+
114
+
115
+ <!-- README_GGUF.md-provided-files end -->
116
+
117
+ <!-- README_GGUF.md-how-to-run start -->
118
+ ## Example `llama.cpp` command
119
+
120
+ Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
121
+
122
+ For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
123
+
124
+ ```
125
+ ./main -t 10 -ngl 32 -m openchat_v3.2_super.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "GPT4 User: Write a story about llamas<|end_of_turn|>GPT4 Assistant:"
126
+ ```
127
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
128
+
129
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
130
+
131
+ Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
132
+
133
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
134
+
135
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
136
+
137
+ ## How to run in `text-generation-webui`
138
+
139
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
140
+
141
+ ## How to run from Python code
142
+
143
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
144
+
145
+ ### How to load this model from Python using ctransformers
146
+
147
+ #### First install the package
148
+
149
+ ```bash
150
+ # Base ctransformers with no GPU acceleration
151
+ pip install ctransformers>=0.2.24
152
+ # Or with CUDA GPU acceleration
153
+ pip install ctransformers[cuda]>=0.2.24
154
+ # Or with ROCm GPU acceleration
155
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
156
+ # Or with Metal GPU acceleration for macOS systems
157
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
158
+ ```
159
+
160
+ #### Simple example code to load one of these GGUF models
161
+
162
+ ```python
163
+ from ctransformers import AutoModelForCausalLM
164
+
165
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
166
+ llm = AutoModelForCausalLM.from_pretrained("None", model_file="openchat_v3.2_super.q4_K_M.gguf", model_type="llama", gpu_layers=50)
167
+
168
+ print(llm("AI is going to"))
169
+ ```
170
+
171
+ ## How to use with LangChain
172
+
173
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
174
+
175
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
176
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
177
+
178
+ <!-- README_GGUF.md-how-to-run end -->
179
+
180
+ <!-- footer start -->
181
+ <!-- 200823 -->
182
+ ## Discord
183
+
184
+ For further support, and discussions on these models and AI in general, join us at:
185
+
186
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
187
+
188
+ ## Thanks, and how to contribute.
189
+
190
+ Thanks to the [chirper.ai](https://chirper.ai) team!
191
+
192
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
193
+
194
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
195
+
196
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
197
+
198
+ * Patreon: https://patreon.com/TheBlokeAI
199
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
200
+
201
+ **Special thanks to**: Aemon Algiz.
202
+
203
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
204
+
205
+
206
+ Thank you to all my generous patrons and donaters!
207
+
208
+ And thank you again to a16z for their generous grant.
209
+
210
+ <!-- footer end -->
211
+
212
+ <!-- original-model-card start -->
213
+ # Original model card: OpenChat's OpenChat v3.2 Super
214
+
215
+
216
+ # OpenChat: Advancing Open-source Language Models with Imperfect Data</h1>
217
+
218
+ <div align="center">
219
+ <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
220
+ </div>
221
+
222
+ OpenChat is a collection of open-source language models, optimized and fine-tuned with a strategy inspired by offline reinforcement learning. We use approximately 80k ShareGPT conversations, a conditioning strategy, and weighted loss to deliver outstanding performance, despite our simple approach. Our ultimate goal is to develop a high-performance, commercially available, open-source large language model, and we are continuously making strides towards this vision.
223
+
224
+ **🤖 Ranked #1 among all open-source models on [AgentBench](https://github.com/THUDM/AgentBench)**
225
+
226
+ **🔥 Ranked #1 among 13B open-source models | 89.5% win-rate on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) | 7.19 score on [MT-bench](https://chat.lmsys.org/?leaderboard)**
227
+
228
+ **🕒 Exceptionally efficient padding-free fine-tuning, only requires 15 hours on 8xA100 80G**
229
+
230
+ **💲 FREE for commercial use under [Llama 2 Community License](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)**
231
+
232
+ [![DOI](https://zenodo.org/badge/645397533.svg)](https://zenodo.org/badge/latestdoi/645397533)
233
+
234
+ ## <a id="models"></a> Usage
235
+
236
+ To use these models, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat/#installation) and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a GPU with at least 48GB RAM or two consumer GPUs with tensor parallelism. To enable tensor parallelism, append `--tensor-parallel-size 2` to the serving command.
237
+
238
+ When started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). See the example request below for reference. Additionally, you can access the [OpenChat Web UI](#web-ui) for a user-friendly experience.
239
+
240
+ To deploy the server as an online service, use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. We recommend using a [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server for security purposes.
241
+
242
+ <details>
243
+ <summary>Example request (click to expand)</summary>
244
+
245
+ ```bash
246
+ curl http://localhost:18888/v1/chat/completions \
247
+ -H "Content-Type: application/json" \
248
+ -d '{
249
+ "model": "openchat_v3.2",
250
+ "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
251
+ }'
252
+ ```
253
+
254
+ </details>
255
+
256
+ | Model | Size | Context | Weights | Serving |
257
+ |--------------|------|---------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
258
+ | OpenChat 3.2 SUPER | 13B | 4096 | [Huggingface](https://huggingface.co/openchat/openchat_v3.2_super) | `python -m ochat.serving.openai_api_server --model-type openchat_v3.2 --model openchat/openchat_v3.2_super --engine-use-ray --worker-use-ray --max-num-batched-tokens 5120` |
259
+
260
+ For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below:
261
+
262
+ <details>
263
+ <summary>Conversation templates (click to expand)</summary>
264
+
265
+ ```python
266
+ # Single-turn V3.2 (SUPER)
267
+ tokenize("GPT4 User: Hello<|end_of_turn|>GPT4 Assistant:")
268
+ # Result: [1, 402, 7982, 29946, 4911, 29901, 15043, 32000, 402, 7982, 29946, 4007, 22137, 29901]
269
+
270
+ # Multi-turn V3.2 (SUPER)
271
+ tokenize("GPT4 User: Hello<|end_of_turn|>GPT4 Assistant: Hi<|end_of_turn|>GPT4 User: How are you today?<|end_of_turn|>GPT4 Assistant:")
272
+ # Result: [1, 402, 7982, 29946, 4911, 29901, 15043, 32000, 402, 7982, 29946, 4007, 22137, 29901, 6324, 32000, 402, 7982, 29946, 4911, 29901, 1128, 526, 366, 9826, 29973, 32000, 402, 7982, 29946, 4007, 22137, 29901]
273
+ ```
274
+
275
+ </details>
276
+
277
+ ## <a id="benchmarks"></a> Benchmarks
278
+
279
+ We have evaluated our models using the two most popular evaluation benchmarks **, including AlpacaEval and MT-bench. Here we list the top models with our released versions, sorted by model size in descending order. The full version can be found on the [MT-bench](https://chat.lmsys.org/?leaderboard) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) leaderboards.
280
+
281
+ To ensure consistency, we used the same routine as ChatGPT / GPT-4 to run these benchmarks. We started the OpenAI API-compatible server and set the `openai.api_base` to `http://localhost:18888/v1` in the benchmark program.
282
+
283
+ | **Model** | **Size** | **Context** | **Dataset Size** | **💲Free** | **AlpacaEval (win rate %)** | **MT-bench (win rate adjusted %)** | **MT-bench (score)** |
284
+ |----------------------------------|----------|-------------|------------------|-----------|-----------------------------|------------------------------------|----------------------|
285
+ | | | | | | **v.s. text-davinci-003** | **v.s. ChatGPT** | |
286
+ | GPT-4 | 1.8T* | 8K | | ❌ | 95.3 | 82.5 | 8.99 |
287
+ | ChatGPT | 175B* | 4K | | ❌ | 89.4 | 50.0 | 7.94 |
288
+ | Llama-2-70B-Chat | 70B | 4K | 2.9M | ✅ | 92.7 | 60.0 | 6.86 |
289
+ | **OpenChat 3.2 SUPER** | **13B** | **4K** | **80K** | ✅ | **89.5** | **57.5** | **7.19** |
290
+ | Llama-2-13B-Chat | 13B | 4K | 2.9M | ✅ | 81.1 | 55.3 | 6.65 |
291
+ | WizardLM 1.2 | 13B | 4K | 196K | ✅ | 89.2 | 53.1 | 7.05 |
292
+ | Vicuna 1.5 | 13B | 2K | 125K | ✅ | 78.8 | 37.2 | 6.57 |
293
+
294
+ *: Estimated model size
295
+
296
+ **: The benchmark metrics represent a quantified measure of a subset of the model's capabilities. A win-rate greater than 50% does not necessarily indicate that the model is better than ChatGPT in all scenarios or for all use cases. It is essential to consider the specific tasks or applications for which the model was evaluated and compare the results accordingly.
297
+
298
+ ## Limitations
299
+
300
+ **Foundation Model Limitations**
301
+ Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
302
+
303
+ - Complex reasoning
304
+ - Mathematical and arithmetic tasks
305
+ - Programming and coding challenges
306
+
307
+ **Hallucination of Non-existent Information**
308
+ OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
309
+
310
+ ## License
311
+
312
+ Our OpenChat V3 models are licensed under the [Llama 2 Community License](https://ai.meta.com/resources/models-and-libraries/llama-downloads/).
313
+
314
+ <!-- original-model-card end -->