Text Generation
Transformers
GGUF
Japanese
llama
japanese-stablelm
causal-lm
TheBloke commited on
Commit
abc03df
1 Parent(s): bbc1635

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +421 -0
README.md ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: stabilityai/japanese-stablelm-instruct-beta-7b
3
+ datasets:
4
+ - kunishou/hh-rlhf-49k-ja
5
+ - kunishou/databricks-dolly-15k-ja
6
+ - kunishou/oasst1-89k-ja
7
+ inference: false
8
+ language:
9
+ - ja
10
+ license:
11
+ - llama2
12
+ model_creator: Stability AI
13
+ model_name: Japanese StableLM Instruct Beta 7B
14
+ model_type: llama
15
+ pipeline_tag: text-generation
16
+ prompt_template: "<s>[INST] <<SYS>>\n\u3042\u306A\u305F\u306F\u5F79\u7ACB\u3064\u30A2\
17
+ \u30B7\u30B9\u30BF\u30F3\u30C8\u3067\u3059\u3002\n<<SYS>>\n\n{prompt} [/INST] \n"
18
+ quantized_by: TheBloke
19
+ tags:
20
+ - japanese-stablelm
21
+ - causal-lm
22
+ ---
23
+ <!-- markdownlint-disable MD041 -->
24
+
25
+ <!-- header start -->
26
+ <!-- 200823 -->
27
+ <div style="width: auto; margin-left: auto; margin-right: auto">
28
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
29
+ </div>
30
+ <div style="display: flex; justify-content: space-between; width: 100%;">
31
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
33
+ </div>
34
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
36
+ </div>
37
+ </div>
38
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
39
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
40
+ <!-- header end -->
41
+
42
+ # Japanese StableLM Instruct Beta 7B - GGUF
43
+ - Model creator: [Stability AI](https://huggingface.co/stabilityai)
44
+ - Original model: [Japanese StableLM Instruct Beta 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-7b)
45
+
46
+ <!-- description start -->
47
+ ## Description
48
+
49
+ This repo contains GGUF format model files for [Stability AI's Japanese StableLM Instruct Beta 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-7b).
50
+
51
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
52
+
53
+ <!-- description end -->
54
+ <!-- README_GGUF.md-about-gguf start -->
55
+ ### About GGUF
56
+
57
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
58
+
59
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
60
+
61
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
62
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
63
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
64
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
65
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
66
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
67
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
68
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
69
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
70
+
71
+ <!-- README_GGUF.md-about-gguf end -->
72
+ <!-- repositories-available start -->
73
+ ## Repositories available
74
+
75
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-AWQ)
76
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GPTQ)
77
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF)
78
+ * [Stability AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-7b)
79
+ <!-- repositories-available end -->
80
+
81
+ <!-- prompt-template start -->
82
+ ## Prompt template: Japanese-StableLM-Llama-2-Chat
83
+
84
+ ```
85
+ <s>[INST] <<SYS>>
86
+ あなたは役立つアシスタントです。
87
+ <<SYS>>
88
+
89
+ {prompt} [/INST]
90
+
91
+ ```
92
+
93
+ <!-- prompt-template end -->
94
+ <!-- licensing start -->
95
+ ## Licensing
96
+
97
+ The creator of the source model has listed its license as `['llama2']`, and this quantization has therefore used that same license.
98
+
99
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
100
+
101
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Stability AI's Japanese StableLM Instruct Beta 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-7b).
102
+ <!-- licensing end -->
103
+ <!-- compatibility_gguf start -->
104
+ ## Compatibility
105
+
106
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
107
+
108
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
109
+
110
+ ## Explanation of quantisation methods
111
+
112
+ <details>
113
+ <summary>Click to see details</summary>
114
+
115
+ The new methods available are:
116
+
117
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
118
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
119
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
120
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
121
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
122
+
123
+ Refer to the Provided Files table below to see what files use which methods, and how.
124
+ </details>
125
+ <!-- compatibility_gguf end -->
126
+
127
+ <!-- README_GGUF.md-provided-files start -->
128
+ ## Provided files
129
+
130
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
131
+ | ---- | ---- | ---- | ---- | ---- | ----- |
132
+ | [japanese-stablelm-instruct-beta-7b.Q2_K.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q2_K.gguf) | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes |
133
+ | [japanese-stablelm-instruct-beta-7b.Q3_K_S.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss |
134
+ | [japanese-stablelm-instruct-beta-7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss |
135
+ | [japanese-stablelm-instruct-beta-7b.Q3_K_L.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss |
136
+ | [japanese-stablelm-instruct-beta-7b.Q4_0.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
137
+ | [japanese-stablelm-instruct-beta-7b.Q4_K_S.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss |
138
+ | [japanese-stablelm-instruct-beta-7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended |
139
+ | [japanese-stablelm-instruct-beta-7b.Q5_0.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
140
+ | [japanese-stablelm-instruct-beta-7b.Q5_K_S.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended |
141
+ | [japanese-stablelm-instruct-beta-7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended |
142
+ | [japanese-stablelm-instruct-beta-7b.Q6_K.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss |
143
+ | [japanese-stablelm-instruct-beta-7b.Q8_0.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-7B-GGUF/blob/main/japanese-stablelm-instruct-beta-7b.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended |
144
+
145
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
146
+
147
+
148
+
149
+ <!-- README_GGUF.md-provided-files end -->
150
+
151
+ <!-- README_GGUF.md-how-to-download start -->
152
+ ## How to download GGUF files
153
+
154
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
155
+
156
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
157
+
158
+ * LM Studio
159
+ * LoLLMS Web UI
160
+ * Faraday.dev
161
+
162
+ ### In `text-generation-webui`
163
+
164
+ Under Download Model, you can enter the model repo: TheBloke/japanese-stablelm-instruct-beta-7B-GGUF and below it, a specific filename to download, such as: japanese-stablelm-instruct-beta-7b.Q4_K_M.gguf.
165
+
166
+ Then click Download.
167
+
168
+ ### On the command line, including multiple files at once
169
+
170
+ I recommend using the `huggingface-hub` Python library:
171
+
172
+ ```shell
173
+ pip3 install huggingface-hub
174
+ ```
175
+
176
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
177
+
178
+ ```shell
179
+ huggingface-cli download TheBloke/japanese-stablelm-instruct-beta-7B-GGUF japanese-stablelm-instruct-beta-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
180
+ ```
181
+
182
+ <details>
183
+ <summary>More advanced huggingface-cli download usage</summary>
184
+
185
+ You can also download multiple files at once with a pattern:
186
+
187
+ ```shell
188
+ huggingface-cli download TheBloke/japanese-stablelm-instruct-beta-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
189
+ ```
190
+
191
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
192
+
193
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
194
+
195
+ ```shell
196
+ pip3 install hf_transfer
197
+ ```
198
+
199
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
200
+
201
+ ```shell
202
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/japanese-stablelm-instruct-beta-7B-GGUF japanese-stablelm-instruct-beta-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
203
+ ```
204
+
205
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
206
+ </details>
207
+ <!-- README_GGUF.md-how-to-download end -->
208
+
209
+ <!-- README_GGUF.md-how-to-run start -->
210
+ ## Example `llama.cpp` command
211
+
212
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
213
+
214
+ ```shell
215
+ ./main -ngl 32 -m japanese-stablelm-instruct-beta-7b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] <<SYS>>\nあなたは役立つアシスタントです。\n<<SYS>>\n\n{prompt} [/INST]"
216
+ ```
217
+
218
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
219
+
220
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
221
+
222
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
223
+
224
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
225
+
226
+ ## How to run in `text-generation-webui`
227
+
228
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
229
+
230
+ ## How to run from Python code
231
+
232
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
233
+
234
+ ### How to load this model in Python code, using ctransformers
235
+
236
+ #### First install the package
237
+
238
+ Run one of the following commands, according to your system:
239
+
240
+ ```shell
241
+ # Base ctransformers with no GPU acceleration
242
+ pip install ctransformers
243
+ # Or with CUDA GPU acceleration
244
+ pip install ctransformers[cuda]
245
+ # Or with AMD ROCm GPU acceleration (Linux only)
246
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
247
+ # Or with Metal GPU acceleration for macOS systems only
248
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
249
+ ```
250
+
251
+ #### Simple ctransformers example code
252
+
253
+ ```python
254
+ from ctransformers import AutoModelForCausalLM
255
+
256
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
257
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/japanese-stablelm-instruct-beta-7B-GGUF", model_file="japanese-stablelm-instruct-beta-7b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
258
+
259
+ print(llm("AI is going to"))
260
+ ```
261
+
262
+ ## How to use with LangChain
263
+
264
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
265
+
266
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
267
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
268
+
269
+ <!-- README_GGUF.md-how-to-run end -->
270
+
271
+ <!-- footer start -->
272
+ <!-- 200823 -->
273
+ ## Discord
274
+
275
+ For further support, and discussions on these models and AI in general, join us at:
276
+
277
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
278
+
279
+ ## Thanks, and how to contribute
280
+
281
+ Thanks to the [chirper.ai](https://chirper.ai) team!
282
+
283
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
284
+
285
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
286
+
287
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
288
+
289
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
290
+
291
+ * Patreon: https://patreon.com/TheBlokeAI
292
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
293
+
294
+ **Special thanks to**: Aemon Algiz.
295
+
296
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
297
+
298
+
299
+ Thank you to all my generous patrons and donaters!
300
+
301
+ And thank you again to a16z for their generous grant.
302
+
303
+ <!-- footer end -->
304
+
305
+ <!-- original-model-card start -->
306
+ # Original model card: Stability AI's Japanese StableLM Instruct Beta 7B
307
+
308
+
309
+ # Japanese-StableLM-Instruct-Beta-7B
310
+
311
+ ![A cute robot wearing a kimono writes calligraphy with one single brush](./japanese-stablelm-robot.jpg)
312
+
313
+ > A cute robot wearing a kimono writes calligraphy with one single brush — [Stable Diffusion XL](https://clipdrop.co/stable-diffusion)
314
+
315
+ ## Model Description
316
+
317
+ `japanese-stablelm-instruct-beta-7b` is a 7B-parameter decoder-only language model based on [japanese-stablelm-base-beta-7b](https://huggingface.co/stabilityai/japanese-stablelm-base-beta-7b) and further fine tuned on Databricks Dolly-15k, Anthropic HH, and other public data.
318
+
319
+ This model is also available in a [larger 70b version](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-70b), or a [faster version with a specialized tokenizer](https://huggingface.co/stabilityai/japanese-stablelm-instruct-ja_vocab-beta-7b).
320
+
321
+ ## Usage
322
+
323
+ First install additional dependencies in [requirements.txt](./requirements.txt):
324
+
325
+ ```sh
326
+ pip install -r requirements.txt
327
+ ```
328
+
329
+ Then start generating text with `japanese-stablelm-instruct-beta-7b` by using the following code snippet:
330
+
331
+ ```python
332
+ import torch
333
+ from transformers import AutoTokenizer, AutoModelForCausalLM
334
+
335
+ model_name = "stabilityai/japanese-stablelm-instruct-beta-7b"
336
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
337
+
338
+ # The next line may need to be modified depending on the environment
339
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
340
+
341
+ def build_prompt(user_query, inputs):
342
+ sys_msg = "<s>[INST] <<SYS>>\nあなたは役立つアシスタントです。\n<<SYS>>\n\n"
343
+ p = sys_msg + user_query + "\n\n" + inputs + " [/INST] "
344
+ return p
345
+
346
+ user_inputs = {
347
+ "user_query": "与えられたことわざの意味を小学生でも分かるように教えてください。",
348
+ "inputs": "情けは人のためならず"
349
+ }
350
+ prompt = build_prompt(**user_inputs)
351
+
352
+ input_ids = tokenizer.encode(
353
+ prompt,
354
+ add_special_tokens=False,
355
+ return_tensors="pt"
356
+ )
357
+
358
+ # this is for reproducibility.
359
+ # feel free to change to get different result
360
+ seed = 23
361
+ torch.manual_seed(seed)
362
+
363
+ tokens = model.generate(
364
+ input_ids.to(device=model.device),
365
+ max_new_tokens=128,
366
+ temperature=0.99,
367
+ top_p=0.95,
368
+ do_sample=True,
369
+ )
370
+
371
+ out = tokenizer.decode(tokens[0], skip_special_tokens=True)
372
+ print(out)
373
+ ```
374
+
375
+ We suggest playing with different generation config (`top_p`, `repetition_penalty` etc) to find the best setup for your tasks. For example, use higher temperature for roleplay task, lower temperature for reasoning.
376
+
377
+ ## Model Details
378
+
379
+ * **Model type**: `japanese-stablelm-instruct-beta-7b` model is an auto-regressive language model based on the Llama2 transformer architecture.
380
+ * **Language(s)**: Japanese
381
+ * **License**: [Llama2 Community License](https://ai.meta.com/llama/license/).
382
+ * **Contact**: For questions and comments about the model, please join [Stable Community Japan](https://discord.gg/StableJP). For future announcements / information about Stability AI models, research, and events, please follow https://twitter.com/StabilityAI_JP.
383
+
384
+ ## Training Dataset
385
+
386
+ The following datasets were used for the instruction training. Note these are Japanese translated versions of the original datasets, shared by [kunishou](https://huggingface.co/kunishou).
387
+
388
+ - [Anthropic HH-RLHF](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja)
389
+ - [Databricks Dolly 15-k](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
390
+ - [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/kunishou/oasst1-89k-ja)
391
+
392
+ ## Use and Limitations
393
+
394
+ ### Intended Use
395
+
396
+ The model is intended to be used by all individuals as a foundation for application-specific fine-tuning without strict limitations on commercial use.
397
+
398
+ ### Limitations and bias
399
+
400
+ The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters which can be reflected in the model generated text. We recommend users exercise reasonable caution when using these models in production systems. Do not use the model for any applications that may cause harm or distress to individuals or groups.
401
+
402
+ ## Authors
403
+ This model was developed by the Research & Development team at Stability AI Japan, and the development was co-led by [Takuya Akiba](https://huggingface.co/iwiwi) and [Meng Lee](https://huggingface.co/leemeng). The members of the team are as follows:
404
+
405
+ - [Meng Lee](https://huggingface.co/leemeng)
406
+ - [Fujiki Nakamura](https://huggingface.co/fujiki)
407
+ - [Makoto Shing](https://huggingface.co/mkshing)
408
+ - [Paul McCann](https://huggingface.co/polm-stability)
409
+ - [Takuya Akiba](https://huggingface.co/iwiwi)
410
+ - [Naoki Orii](https://huggingface.co/mrorii)
411
+
412
+ ## Acknowledgements
413
+
414
+ We thank Meta Research for releasing Llama 2 under an open license for others to build on.
415
+
416
+ We are grateful for the contributions of the EleutherAI Polyglot-JA team in helping us to collect a large amount of pre-training data in Japanese. Polyglot-JA members includes Hyunwoong Ko (Project Lead), Fujiki Nakamura (originally started this project when he commited to the Polyglot team), Yunho Mo, Minji Jung, KeunSeok Im, and Su-Kyeong Jang.
417
+
418
+ We are also appreciative of [AI Novelist/Sta (Bit192, Inc.)](https://ai-novel.com/index.php) and the numerous contributors from [Stable Community Japan](https://discord.gg/VPrcE475HB) for assisting us in gathering a large amount of high-quality Japanese textual data for model training.
419
+
420
+
421
+ <!-- original-model-card end -->