--- inference: false license: other datasets: - jondurbin/airoboros-gpt4-1.3 ---
TheBlokeAI

Chat & support: my new Discord server

Want to contribute? TheBloke's Patreon page

# John Durbin's Airoboros 7B GPT4 1.3 GPTQ These files are GPTQ 4bit model files for [Jon Durbin's Airoboros 7B GPT4 1.3](https://huggingface.co/jondurbin/airoboros-7b-gpt4-1.3). It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). **Note from model creator Jon Durbin: This version has problems, use if you dare, or wait for 1.4.** ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/airoboros-7B-gpt4-1.3-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/airoboros-7B-gpt4-1.3-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-7b-gpt4-1.3) ## Prompt template ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. USER: prompt ASSISTANT: ``` ## How to easily download and use this model in text-generation-webui Please make sure you're using the latest version of text-generation-webui 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/airoboros-7B-gpt4-1.3-GPTQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done" 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `airoboros-7B-gpt4-1.3-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! ## How to use this GPTQ model from Python code First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed: `pip install auto-gptq` Then try the following example code: ```python from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import argparse model_name_or_path = "TheBloke/airoboros-7B-gpt4-1.3-GPTQ" model_basename = "airoboros-7b-gpt4-1.3-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename, use_safetensors=True, trust_remote_code=False, device="cuda:0", use_triton=use_triton, quantize_config=None) # Note: check the prompt template is correct for this model. prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Provided files **airoboros-7b-gpt4-1.3-GPTQ-4bit-128g.no-act.order.safetensors** This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead. It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed. * `airoboros-7b-gpt4-1.3-GPTQ-4bit-128g.no-act.order.safetensors` * Works with AutoGPTQ in CUDA or Triton modes. * LLaMa models also work with [ExLlama](https://github.com/turboderp/exllama}, which usually provides much higher performance, and uses less VRAM, than AutoGPTQ. * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode. * Works with text-generation-webui, including one-click-installers. * Parameters: Groupsize = 128. Act Order / desc_act = False. ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Mano Prime, Fen Risland, Derek Yates, Preetika Verma, webtim, Sean Connelly, Alps Aficionado, Karl Bernard, Junyu Yang, Nathan LeClaire, Chris McCloskey, Lone Striker, Asp the Wyvern, Eugene Pentland, Imad Khwaja, trip7s trip, WelcomeToTheClub, John Detwiler, Artur Olbinski, Khalefa Al-Ahmad, Trenton Dambrowitz, Talal Aujan, Kevin Schuppel, Luke Pendergrass, Pyrater, Joseph William Delisle, terasurfer , vamX, Gabriel Puliatti, David Flickinger, Jonathan Leane, Iucharbius , Luke, Deep Realms, Cory Kujawski, ya boyyy, Illia Dulskyi, senxiiz, Johann-Peter Hartmann, John Villwock, K, Ghost , Spiking Neurons AB, Nikolai Manek, Rainer Wilmers, Pierre Kircher, biorpg, Space Cruiser, Ai Maven, subjectnull, Willem Michiel, Ajan Kanaga, Kalila, chris gileta, Oscar Rangel. Thank you to all my generous patrons and donaters! # Original model card: Jon Durbin's Airoboros 7B GPT4 1.3 __This version has problems, use if you dare, or wait for 1.4.__ ### Overview This is a qlora fine-tuned 7b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros This is mostly an extension of [1.2](https://huggingface.co/jondurbin/airoboros-7b-gpt4-1.2) with a few enhancements: - All coding instructions have an equivalent " PLAINFORMAT" version now. - Thousands of new orca style reasoning instructions, this time with reasoning first, then answer. - Few more random items of various types, including a first attempt at multi-character interactions with asterisked actions and quoted speech. This model was fine-tuned with a fork of [qlora](https://github.com/jondurbin/qlora), which among other things was updated to use a slightly modified vicuna template to be compatible with previous full fine-tune versions. ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. USER: [prompt] ASSISTANT: ``` So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon). ### Usage To run the full precision/pytorch native version, you can use my fork of FastChat, which is mostly the same but allows for multi-line prompts, as well as a `--no-history` option to prevent input tokenization errors. ``` pip install git+https://github.com/jondurbin/FastChat ``` Be sure you are pulling the latest branch! Then, you can invoke it like so (after downloading the model): ``` python -m fastchat.serve.cli \ --model-path airoboros-7b-gpt4-1.3 \ --temperature 0.5 \ --max-new-tokens 2048 \ --no-history ```