Initial GPTQ model commit
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
inference: false
|
3 |
-
license:
|
4 |
model_creator: WizardLM
|
5 |
model_link: https://huggingface.co/WizardLM/WizardMath-13B-V1.0
|
6 |
model_name: WizardMath 13B V1.0
|
@@ -31,35 +31,30 @@ quantized_by: TheBloke
|
|
31 |
|
32 |
## Description
|
33 |
|
34 |
-
This repo contains GPTQ model files for [
|
35 |
|
36 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
37 |
|
38 |
## Repositories available
|
39 |
|
40 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ)
|
41 |
-
* [2, 3, 4, 5, 6 and 8-bit
|
|
|
42 |
* [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardMath-13B-V1.0)
|
43 |
|
44 |
## Prompt template: Alpaca-CoT
|
45 |
|
46 |
-
|
47 |
-
β<b>Note for model system prompts usage:</b>
|
48 |
-
|
49 |
-
**Default version:**
|
50 |
-
|
51 |
-
```
|
52 |
-
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
|
53 |
```
|
|
|
54 |
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
|
59 |
-
|
60 |
-
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response: Let's think step by step."
|
61 |
-
```
|
62 |
|
|
|
63 |
|
64 |
## Provided files and GPTQ parameters
|
65 |
|
@@ -74,7 +69,7 @@ All GPTQ files are made with AutoGPTQ.
|
|
74 |
|
75 |
- Bits: The bit size of the quantised model.
|
76 |
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
|
77 |
-
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
|
78 |
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
|
79 |
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
|
80 |
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
|
@@ -84,11 +79,11 @@ All GPTQ files are made with AutoGPTQ.
|
|
84 |
|
85 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
86 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
87 |
-
| [main](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
|
88 |
-
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
|
89 |
-
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
90 |
-
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
91 |
-
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
|
92 |
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
|
93 |
|
94 |
## How to download from branches
|
@@ -104,14 +99,14 @@ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingfa
|
|
104 |
|
105 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
106 |
|
107 |
-
It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
|
108 |
|
109 |
1. Click the **Model tab**.
|
110 |
2. Under **Download custom model or LoRA**, enter `TheBloke/WizardMath-13B-V1.0-GPTQ`.
|
111 |
- To download from a specific branch, enter for example `TheBloke/WizardMath-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
|
112 |
- see Provided Files above for the list of branches for each option.
|
113 |
3. Click **Download**.
|
114 |
-
4. The model will start downloading. Once it's finished it will say "Done"
|
115 |
5. In the top left, click the refresh icon next to **Model**.
|
116 |
6. In the **Model** dropdown, choose the model you just downloaded: `WizardMath-13B-V1.0-GPTQ`
|
117 |
7. The model will automatically load, and is now ready for use!
|
@@ -121,51 +116,45 @@ It is strongly recommended to use the text-generation-webui one-click-installers
|
|
121 |
|
122 |
## How to use this GPTQ model from Python code
|
123 |
|
124 |
-
|
125 |
|
126 |
-
```
|
127 |
-
pip3 install
|
|
|
128 |
```
|
129 |
|
130 |
-
If you have problems installing AutoGPTQ,
|
131 |
-
|
|
|
132 |
pip3 uninstall -y auto-gptq
|
133 |
git clone https://github.com/PanQiWei/AutoGPTQ
|
134 |
cd AutoGPTQ
|
135 |
pip3 install .
|
136 |
```
|
137 |
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
```python
|
141 |
-
from transformers import AutoTokenizer, pipeline
|
142 |
-
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
143 |
|
144 |
model_name_or_path = "TheBloke/WizardMath-13B-V1.0-GPTQ"
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
147 |
|
148 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
149 |
|
150 |
-
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
151 |
-
use_safetensors=True,
|
152 |
-
trust_remote_code=False,
|
153 |
-
device="cuda:0",
|
154 |
-
use_triton=use_triton,
|
155 |
-
quantize_config=None)
|
156 |
-
|
157 |
-
"""
|
158 |
-
# To download from a specific branch, use the revision parameter, as in this example:
|
159 |
-
# Note that `revision` requires AutoGPTQ 0.3.1 or later!
|
160 |
-
|
161 |
-
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
162 |
-
revision="gptq-4bit-32g-actorder_True",
|
163 |
-
use_safetensors=True,
|
164 |
-
trust_remote_code=False,
|
165 |
-
device="cuda:0",
|
166 |
-
quantize_config=None)
|
167 |
-
"""
|
168 |
-
|
169 |
prompt = "Tell me about AI"
|
170 |
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
171 |
|
@@ -175,6 +164,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
|
|
175 |
|
176 |
|
177 |
### Response: Let's think step by step.
|
|
|
178 |
'''
|
179 |
|
180 |
print("\n\n*** Generate:")
|
@@ -185,9 +175,6 @@ print(tokenizer.decode(output[0]))
|
|
185 |
|
186 |
# Inference can also be done using transformers' pipeline
|
187 |
|
188 |
-
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
|
189 |
-
logging.set_verbosity(logging.CRITICAL)
|
190 |
-
|
191 |
print("*** Pipeline:")
|
192 |
pipe = pipeline(
|
193 |
"text-generation",
|
@@ -204,9 +191,11 @@ print(pipe(prompt_template)[0]['generated_text'])
|
|
204 |
|
205 |
## Compatibility
|
206 |
|
207 |
-
The files provided
|
|
|
|
|
208 |
|
209 |
-
|
210 |
|
211 |
<!-- footer start -->
|
212 |
<!-- 200823 -->
|
@@ -231,7 +220,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
|
|
231 |
|
232 |
**Special thanks to**: Aemon Algiz.
|
233 |
|
234 |
-
**Patreon special mentions**:
|
235 |
|
236 |
|
237 |
Thank you to all my generous patrons and donaters!
|
@@ -240,57 +229,79 @@ And thank you again to a16z for their generous grant.
|
|
240 |
|
241 |
<!-- footer end -->
|
242 |
|
243 |
-
# Original model card:
|
244 |
|
245 |
|
246 |
|
247 |
-
## WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct
|
248 |
|
249 |
|
250 |
|
251 |
<p align="center">
|
252 |
-
π€ <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β’ π¦ <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β’ π <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β’ π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>
|
253 |
</p>
|
254 |
<p align="center">
|
255 |
-
π Join our <a href="https://discord.gg/
|
256 |
</p>
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
263 |
-
|
|
264 |
-
|
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
**Github Repo**: https://github.com/nlpxucan/WizardLM/tree/main/WizardMath
|
269 |
|
270 |
-
**Twitter**: https://twitter.com/WizardLM_AI/status/
|
271 |
|
272 |
-
**Discord**: https://discord.gg/
|
273 |
|
274 |
|
275 |
|
276 |
β<b>Note for model system prompts usage:</b>
|
277 |
|
278 |
-
|
|
|
|
|
|
|
279 |
|
280 |
```
|
281 |
-
Below is an instruction that describes a task. Write a response that appropriately completes the request
|
|
|
282 |
|
283 |
|
284 |
-
|
285 |
-
{instruction}
|
286 |
|
287 |
|
288 |
-
### Response: Let's think step by step.
|
289 |
```
|
|
|
|
|
|
|
290 |
|
291 |
β<b>To commen concern about dataset:</b>
|
292 |
|
293 |
-
Recently, there have been clear changes in the open-source policy and regulations of our overall organization's code, data, and models.
|
294 |
Despite this, we have still worked hard to obtain opening the weights of the model first, but the data involves stricter auditing and is in review with our legal team .
|
295 |
Our researchers have no authority to publicly release them without authorization.
|
296 |
Thank you for your understanding.
|
|
|
1 |
---
|
2 |
inference: false
|
3 |
+
license: llama2
|
4 |
model_creator: WizardLM
|
5 |
model_link: https://huggingface.co/WizardLM/WizardMath-13B-V1.0
|
6 |
model_name: WizardMath 13B V1.0
|
|
|
31 |
|
32 |
## Description
|
33 |
|
34 |
+
This repo contains GPTQ model files for [none](https://huggingface.co/WizardLM/WizardMath-13B-V1.0).
|
35 |
|
36 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
37 |
|
38 |
## Repositories available
|
39 |
|
40 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ)
|
41 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGUF)
|
42 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML)
|
43 |
* [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardMath-13B-V1.0)
|
44 |
|
45 |
## Prompt template: Alpaca-CoT
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
```
|
48 |
+
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
49 |
|
50 |
|
51 |
+
### Instruction:
|
52 |
+
{prompt}
|
53 |
|
54 |
|
55 |
+
### Response: Let's think step by step.
|
|
|
|
|
56 |
|
57 |
+
```
|
58 |
|
59 |
## Provided files and GPTQ parameters
|
60 |
|
|
|
69 |
|
70 |
- Bits: The bit size of the quantised model.
|
71 |
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
|
72 |
+
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
|
73 |
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
|
74 |
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
|
75 |
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
|
|
|
79 |
|
80 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
81 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
82 |
+
| [main](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
|
83 |
+
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
|
84 |
+
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
85 |
+
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
86 |
+
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
|
87 |
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
|
88 |
|
89 |
## How to download from branches
|
|
|
99 |
|
100 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
101 |
|
102 |
+
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
|
103 |
|
104 |
1. Click the **Model tab**.
|
105 |
2. Under **Download custom model or LoRA**, enter `TheBloke/WizardMath-13B-V1.0-GPTQ`.
|
106 |
- To download from a specific branch, enter for example `TheBloke/WizardMath-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
|
107 |
- see Provided Files above for the list of branches for each option.
|
108 |
3. Click **Download**.
|
109 |
+
4. The model will start downloading. Once it's finished it will say "Done".
|
110 |
5. In the top left, click the refresh icon next to **Model**.
|
111 |
6. In the **Model** dropdown, choose the model you just downloaded: `WizardMath-13B-V1.0-GPTQ`
|
112 |
7. The model will automatically load, and is now ready for use!
|
|
|
116 |
|
117 |
## How to use this GPTQ model from Python code
|
118 |
|
119 |
+
### Install the necessary packages - Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
|
120 |
|
121 |
+
```shell
|
122 |
+
pip3 install transformers>=4.32.0 optimum>=1.12.0
|
123 |
+
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
|
124 |
```
|
125 |
|
126 |
+
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
|
127 |
+
|
128 |
+
```shell
|
129 |
pip3 uninstall -y auto-gptq
|
130 |
git clone https://github.com/PanQiWei/AutoGPTQ
|
131 |
cd AutoGPTQ
|
132 |
pip3 install .
|
133 |
```
|
134 |
|
135 |
+
### For CodeLlama models, you must use Transformers 4.33.0 or later.
|
136 |
+
|
137 |
+
If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
|
138 |
+
```shell
|
139 |
+
pip3 uninstall -y transformers
|
140 |
+
pip3 install git+https://github.com/huggingface/transformers.git
|
141 |
+
```
|
142 |
+
|
143 |
+
### You can then use the following code
|
144 |
|
145 |
```python
|
146 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
147 |
|
148 |
model_name_or_path = "TheBloke/WizardMath-13B-V1.0-GPTQ"
|
149 |
+
# To use a different branch, change revision
|
150 |
+
# For example: revision="gptq-4bit-32g-actorder_True"
|
151 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
152 |
+
torch_dtype=torch.float16,
|
153 |
+
device_map="auto",
|
154 |
+
revision="main")
|
155 |
|
156 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
prompt = "Tell me about AI"
|
159 |
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
160 |
|
|
|
164 |
|
165 |
|
166 |
### Response: Let's think step by step.
|
167 |
+
|
168 |
'''
|
169 |
|
170 |
print("\n\n*** Generate:")
|
|
|
175 |
|
176 |
# Inference can also be done using transformers' pipeline
|
177 |
|
|
|
|
|
|
|
178 |
print("*** Pipeline:")
|
179 |
pipe = pipeline(
|
180 |
"text-generation",
|
|
|
191 |
|
192 |
## Compatibility
|
193 |
|
194 |
+
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
|
195 |
+
|
196 |
+
[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
|
197 |
|
198 |
+
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
|
199 |
|
200 |
<!-- footer start -->
|
201 |
<!-- 200823 -->
|
|
|
220 |
|
221 |
**Special thanks to**: Aemon Algiz.
|
222 |
|
223 |
+
**Patreon special mentions**: Kacper WikieΕ, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, ιΏζ, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
|
224 |
|
225 |
|
226 |
Thank you to all my generous patrons and donaters!
|
|
|
229 |
|
230 |
<!-- footer end -->
|
231 |
|
232 |
+
# Original model card: none
|
233 |
|
234 |
|
235 |
|
236 |
+
## WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct (RLEIF)
|
237 |
|
238 |
|
239 |
|
240 |
<p align="center">
|
241 |
+
π€ <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β’π± <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> β’ π¦ <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β’ π <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β’ π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β’ π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
|
242 |
</p>
|
243 |
<p align="center">
|
244 |
+
π Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
|
245 |
</p>
|
246 |
|
247 |
+
| Model | Checkpoint | Paper | HumanEval | MBPP | Demo | License |
|
248 |
+
| ----- |------| ---- |------|-------| ----- | ----- |
|
249 |
+
| WizardCoder-Python-34B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 61.2 | [Demo](http://47.103.63.15:50085/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
|
250 |
+
| WizardCoder-15B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 |50.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
|
251 |
+
| WizardCoder-Python-13B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | 55.6 | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
|
252 |
+
| WizardCoder-3B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 |37.4 | [Demo](http://47.103.63.15:50086/) | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
|
253 |
+
| WizardCoder-1B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 |28.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
|
254 |
+
|
255 |
+
| Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License|
|
256 |
+
| ----- |------| ---- |------|-------| ----- | ----- |
|
257 |
+
| WizardMath-70B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
|
258 |
+
| WizardMath-13B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
|
259 |
+
| WizardMath-7B-V1.0 | π€ <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>|
|
260 |
+
|
261 |
+
|
262 |
+
<font size=4>
|
263 |
+
|
264 |
+
| <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>GSM8k</sup> | <sup>HumanEval</sup> | <sup>License</sup>|
|
265 |
+
| ----- |------| ---- |------|-------| ----- | ----- | ----- |
|
266 |
+
| <sup>**WizardLM-70B-V1.0**</sup> | <sup>π€ <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>π**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup> |<sup>**77.6%**</sup> | <sup> **50.6 pass@1**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
|
267 |
+
| <sup>WizardLM-13B-V1.2</sup> | <sup>π€ <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> |<sup>55.3%</sup> | <sup>36.6 pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
|
268 |
+
| <sup>WizardLM-13B-V1.1</sup> |<sup> π€ <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | | <sup>25.0 pass@1</sup>| <sup>Non-commercial</sup>|
|
269 |
+
| <sup>WizardLM-30B-V1.0</sup> | <sup>π€ <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | | <sup>37.8 pass@1</sup>| <sup>Non-commercial</sup> |
|
270 |
+
| <sup>WizardLM-13B-V1.0</sup> | <sup>π€ <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | | <sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>|
|
271 |
+
| <sup>WizardLM-7B-V1.0 </sup>| <sup>π€ <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> π <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>|
|
272 |
+
</font>
|
273 |
|
274 |
**Github Repo**: https://github.com/nlpxucan/WizardLM/tree/main/WizardMath
|
275 |
|
276 |
+
**Twitter**: https://twitter.com/WizardLM_AI/status/1689998428200112128
|
277 |
|
278 |
+
**Discord**: https://discord.gg/VZjjHtWrKs
|
279 |
|
280 |
|
281 |
|
282 |
β<b>Note for model system prompts usage:</b>
|
283 |
|
284 |
+
Please use **the same systems prompts strictly** with us, and we do not guarantee the accuracy of the **quantified versions**.
|
285 |
+
|
286 |
+
|
287 |
+
**Default version:**
|
288 |
|
289 |
```
|
290 |
+
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
|
291 |
+
```
|
292 |
|
293 |
|
294 |
+
**CoT Version:** οΌβFor the **simple** math questions, we do NOT recommend to use the CoT prompt.οΌ
|
|
|
295 |
|
296 |
|
|
|
297 |
```
|
298 |
+
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response: Let's think step by step."
|
299 |
+
```
|
300 |
+
|
301 |
|
302 |
β<b>To commen concern about dataset:</b>
|
303 |
|
304 |
+
Recently, there have been clear changes in the open-source policy and regulations of our overall organization's code, data, and models.
|
305 |
Despite this, we have still worked hard to obtain opening the weights of the model first, but the data involves stricter auditing and is in review with our legal team .
|
306 |
Our researchers have no authority to publicly release them without authorization.
|
307 |
Thank you for your understanding.
|