TheBloke commited on
Commit
517ae74
β€’
1 Parent(s): c2f6366

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +89 -78
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  inference: false
3
- license: other
4
  model_creator: WizardLM
5
  model_link: https://huggingface.co/WizardLM/WizardMath-13B-V1.0
6
  model_name: WizardMath 13B V1.0
@@ -31,35 +31,30 @@ quantized_by: TheBloke
31
 
32
  ## Description
33
 
34
- This repo contains GPTQ model files for [WizardLM's WizardMath 13B V1.0](https://huggingface.co/WizardLM/WizardMath-13B-V1.0).
35
 
36
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
37
 
38
  ## Repositories available
39
 
40
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ)
41
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML)
 
42
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardMath-13B-V1.0)
43
 
44
  ## Prompt template: Alpaca-CoT
45
 
46
-
47
- ❗<b>Note for model system prompts usage:</b>
48
-
49
- **Default version:**
50
-
51
- ```
52
- "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
53
  ```
 
54
 
55
 
56
- **CoT Version:** οΌˆβ—For the **simple** math questions, we do NOT recommend to use the CoT prompt.οΌ‰
 
57
 
58
 
59
- ```
60
- "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response: Let's think step by step."
61
- ```
62
 
 
63
 
64
  ## Provided files and GPTQ parameters
65
 
@@ -74,7 +69,7 @@ All GPTQ files are made with AutoGPTQ.
74
 
75
  - Bits: The bit size of the quantised model.
76
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
77
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
78
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
79
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
80
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -84,11 +79,11 @@ All GPTQ files are made with AutoGPTQ.
84
 
85
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
86
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
87
- | [main](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
88
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
89
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
90
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
91
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
92
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
93
 
94
  ## How to download from branches
@@ -104,14 +99,14 @@ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingfa
104
 
105
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
 
107
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
108
 
109
  1. Click the **Model tab**.
110
  2. Under **Download custom model or LoRA**, enter `TheBloke/WizardMath-13B-V1.0-GPTQ`.
111
  - To download from a specific branch, enter for example `TheBloke/WizardMath-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
112
  - see Provided Files above for the list of branches for each option.
113
  3. Click **Download**.
114
- 4. The model will start downloading. Once it's finished it will say "Done"
115
  5. In the top left, click the refresh icon next to **Model**.
116
  6. In the **Model** dropdown, choose the model you just downloaded: `WizardMath-13B-V1.0-GPTQ`
117
  7. The model will automatically load, and is now ready for use!
@@ -121,51 +116,45 @@ It is strongly recommended to use the text-generation-webui one-click-installers
121
 
122
  ## How to use this GPTQ model from Python code
123
 
124
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
125
 
126
- ```
127
- pip3 install auto-gptq
 
128
  ```
129
 
130
- If you have problems installing AutoGPTQ, please build from source instead:
131
- ```
 
132
  pip3 uninstall -y auto-gptq
133
  git clone https://github.com/PanQiWei/AutoGPTQ
134
  cd AutoGPTQ
135
  pip3 install .
136
  ```
137
 
138
- Then try the following example code:
 
 
 
 
 
 
 
 
139
 
140
  ```python
141
- from transformers import AutoTokenizer, pipeline, logging
142
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
143
 
144
  model_name_or_path = "TheBloke/WizardMath-13B-V1.0-GPTQ"
145
-
146
- use_triton = False
 
 
 
 
147
 
148
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
149
 
150
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
151
- use_safetensors=True,
152
- trust_remote_code=False,
153
- device="cuda:0",
154
- use_triton=use_triton,
155
- quantize_config=None)
156
-
157
- """
158
- # To download from a specific branch, use the revision parameter, as in this example:
159
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
160
-
161
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
162
- revision="gptq-4bit-32g-actorder_True",
163
- use_safetensors=True,
164
- trust_remote_code=False,
165
- device="cuda:0",
166
- quantize_config=None)
167
- """
168
-
169
  prompt = "Tell me about AI"
170
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
171
 
@@ -175,6 +164,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
175
 
176
 
177
  ### Response: Let's think step by step.
 
178
  '''
179
 
180
  print("\n\n*** Generate:")
@@ -185,9 +175,6 @@ print(tokenizer.decode(output[0]))
185
 
186
  # Inference can also be done using transformers' pipeline
187
 
188
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
189
- logging.set_verbosity(logging.CRITICAL)
190
-
191
  print("*** Pipeline:")
192
  pipe = pipeline(
193
  "text-generation",
@@ -204,9 +191,11 @@ print(pipe(prompt_template)[0]['generated_text'])
204
 
205
  ## Compatibility
206
 
207
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
208
 
209
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
210
 
211
  <!-- footer start -->
212
  <!-- 200823 -->
@@ -231,7 +220,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
231
 
232
  **Special thanks to**: Aemon Algiz.
233
 
234
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper WikieΕ‚, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
235
 
236
 
237
  Thank you to all my generous patrons and donaters!
@@ -240,57 +229,79 @@ And thank you again to a16z for their generous grant.
240
 
241
  <!-- footer end -->
242
 
243
- # Original model card: WizardLM's WizardMath 13B V1.0
244
 
245
 
246
 
247
- ## WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct
248
 
249
 
250
 
251
  <p align="center">
252
- πŸ€— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> <br>
253
  </p>
254
  <p align="center">
255
- πŸ‘‹ Join our <a href="https://discord.gg/bpmeZD7V" target="_blank">Discord</a>
256
  </p>
257
 
258
-
259
-
260
-
261
-
262
- | Model | Checkpoint | Paper | GSM8k | MATH | License|
263
- | ----- |------| ---- |------|-------| ----- |
264
- | WizardMath-70B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | πŸ“ƒComing Soon| **81.6** | **22.7** | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a> |
265
- | WizardMath-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | πŸ“ƒComing Soon| **63.9** | **14.0** | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a> |
266
- | WizardMath-7B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | πŸ“ƒComing Soon| **54.9** | **10.7** | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a>|
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
 
268
  **Github Repo**: https://github.com/nlpxucan/WizardLM/tree/main/WizardMath
269
 
270
- **Twitter**: https://twitter.com/WizardLM_AI/status/1689990201467432960
271
 
272
- **Discord**: https://discord.gg/bpmeZD7V
273
 
274
 
275
 
276
  ❗<b>Note for model system prompts usage:</b>
277
 
278
- ## CoT Version:
 
 
 
279
 
280
  ```
281
- Below is an instruction that describes a task. Write a response that appropriately completes the request.
 
282
 
283
 
284
- ### Instruction:
285
- {instruction}
286
 
287
 
288
- ### Response: Let's think step by step.
289
  ```
 
 
 
290
 
291
  ❗<b>To commen concern about dataset:</b>
292
 
293
- Recently, there have been clear changes in the open-source policy and regulations of our overall organization's code, data, and models.
294
  Despite this, we have still worked hard to obtain opening the weights of the model first, but the data involves stricter auditing and is in review with our legal team .
295
  Our researchers have no authority to publicly release them without authorization.
296
  Thank you for your understanding.
 
1
  ---
2
  inference: false
3
+ license: llama2
4
  model_creator: WizardLM
5
  model_link: https://huggingface.co/WizardLM/WizardMath-13B-V1.0
6
  model_name: WizardMath 13B V1.0
 
31
 
32
  ## Description
33
 
34
+ This repo contains GPTQ model files for [none](https://huggingface.co/WizardLM/WizardMath-13B-V1.0).
35
 
36
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
37
 
38
  ## Repositories available
39
 
40
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ)
41
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGUF)
42
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML)
43
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardMath-13B-V1.0)
44
 
45
  ## Prompt template: Alpaca-CoT
46
 
 
 
 
 
 
 
 
47
  ```
48
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
49
 
50
 
51
+ ### Instruction:
52
+ {prompt}
53
 
54
 
55
+ ### Response: Let's think step by step.
 
 
56
 
57
+ ```
58
 
59
  ## Provided files and GPTQ parameters
60
 
 
69
 
70
  - Bits: The bit size of the quantised model.
71
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
72
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
73
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
74
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
75
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
79
 
80
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
81
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
82
+ | [main](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
83
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
84
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
85
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
86
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
87
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
88
 
89
  ## How to download from branches
 
99
 
100
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
101
 
102
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
103
 
104
  1. Click the **Model tab**.
105
  2. Under **Download custom model or LoRA**, enter `TheBloke/WizardMath-13B-V1.0-GPTQ`.
106
  - To download from a specific branch, enter for example `TheBloke/WizardMath-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
107
  - see Provided Files above for the list of branches for each option.
108
  3. Click **Download**.
109
+ 4. The model will start downloading. Once it's finished it will say "Done".
110
  5. In the top left, click the refresh icon next to **Model**.
111
  6. In the **Model** dropdown, choose the model you just downloaded: `WizardMath-13B-V1.0-GPTQ`
112
  7. The model will automatically load, and is now ready for use!
 
116
 
117
  ## How to use this GPTQ model from Python code
118
 
119
+ ### Install the necessary packages - Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
120
 
121
+ ```shell
122
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
123
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
124
  ```
125
 
126
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
127
+
128
+ ```shell
129
  pip3 uninstall -y auto-gptq
130
  git clone https://github.com/PanQiWei/AutoGPTQ
131
  cd AutoGPTQ
132
  pip3 install .
133
  ```
134
 
135
+ ### For CodeLlama models, you must use Transformers 4.33.0 or later.
136
+
137
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
138
+ ```shell
139
+ pip3 uninstall -y transformers
140
+ pip3 install git+https://github.com/huggingface/transformers.git
141
+ ```
142
+
143
+ ### You can then use the following code
144
 
145
  ```python
146
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
147
 
148
  model_name_or_path = "TheBloke/WizardMath-13B-V1.0-GPTQ"
149
+ # To use a different branch, change revision
150
+ # For example: revision="gptq-4bit-32g-actorder_True"
151
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
152
+ torch_dtype=torch.float16,
153
+ device_map="auto",
154
+ revision="main")
155
 
156
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  prompt = "Tell me about AI"
159
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
160
 
 
164
 
165
 
166
  ### Response: Let's think step by step.
167
+
168
  '''
169
 
170
  print("\n\n*** Generate:")
 
175
 
176
  # Inference can also be done using transformers' pipeline
177
 
 
 
 
178
  print("*** Pipeline:")
179
  pipe = pipeline(
180
  "text-generation",
 
191
 
192
  ## Compatibility
193
 
194
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
195
+
196
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
197
 
198
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
199
 
200
  <!-- footer start -->
201
  <!-- 200823 -->
 
220
 
221
  **Special thanks to**: Aemon Algiz.
222
 
223
+ **Patreon special mentions**: Kacper WikieΕ‚, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
224
 
225
 
226
  Thank you to all my generous patrons and donaters!
 
229
 
230
  <!-- footer end -->
231
 
232
+ # Original model card: none
233
 
234
 
235
 
236
+ ## WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct (RLEIF)
237
 
238
 
239
 
240
  <p align="center">
241
+ πŸ€— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β€’πŸ± <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
242
  </p>
243
  <p align="center">
244
+ πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
245
  </p>
246
 
247
+ | Model | Checkpoint | Paper | HumanEval | MBPP | Demo | License |
248
+ | ----- |------| ---- |------|-------| ----- | ----- |
249
+ | WizardCoder-Python-34B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 61.2 | [Demo](http://47.103.63.15:50085/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
250
+ | WizardCoder-15B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 |50.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
251
+ | WizardCoder-Python-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | 55.6 | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
252
+ | WizardCoder-3B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 |37.4 | [Demo](http://47.103.63.15:50086/) | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
253
+ | WizardCoder-1B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 |28.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
254
+
255
+ | Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License|
256
+ | ----- |------| ---- |------|-------| ----- | ----- |
257
+ | WizardMath-70B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
258
+ | WizardMath-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
259
+ | WizardMath-7B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>|
260
+
261
+
262
+ <font size=4>
263
+
264
+ | <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>GSM8k</sup> | <sup>HumanEval</sup> | <sup>License</sup>|
265
+ | ----- |------| ---- |------|-------| ----- | ----- | ----- |
266
+ | <sup>**WizardLM-70B-V1.0**</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>πŸ“ƒ**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup> |<sup>**77.6%**</sup> | <sup> **50.6 pass@1**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
267
+ | <sup>WizardLM-13B-V1.2</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> |<sup>55.3%</sup> | <sup>36.6 pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
268
+ | <sup>WizardLM-13B-V1.1</sup> |<sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | | <sup>25.0 pass@1</sup>| <sup>Non-commercial</sup>|
269
+ | <sup>WizardLM-30B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | | <sup>37.8 pass@1</sup>| <sup>Non-commercial</sup> |
270
+ | <sup>WizardLM-13B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | | <sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>|
271
+ | <sup>WizardLM-7B-V1.0 </sup>| <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>|
272
+ </font>
273
 
274
  **Github Repo**: https://github.com/nlpxucan/WizardLM/tree/main/WizardMath
275
 
276
+ **Twitter**: https://twitter.com/WizardLM_AI/status/1689998428200112128
277
 
278
+ **Discord**: https://discord.gg/VZjjHtWrKs
279
 
280
 
281
 
282
  ❗<b>Note for model system prompts usage:</b>
283
 
284
+ Please use **the same systems prompts strictly** with us, and we do not guarantee the accuracy of the **quantified versions**.
285
+
286
+
287
+ **Default version:**
288
 
289
  ```
290
+ "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
291
+ ```
292
 
293
 
294
+ **CoT Version:** οΌˆβ—For the **simple** math questions, we do NOT recommend to use the CoT prompt.οΌ‰
 
295
 
296
 
 
297
  ```
298
+ "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response: Let's think step by step."
299
+ ```
300
+
301
 
302
  ❗<b>To commen concern about dataset:</b>
303
 
304
+ Recently, there have been clear changes in the open-source policy and regulations of our overall organization's code, data, and models.
305
  Despite this, we have still worked hard to obtain opening the weights of the model first, but the data involves stricter auditing and is in review with our legal team .
306
  Our researchers have no authority to publicly release them without authorization.
307
  Thank you for your understanding.