TheBloke commited on
Commit
7ff6954
β€’
1 Parent(s): c234d7c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -54
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  inference: false
3
- license: other
4
  model_creator: WizardLM
5
  model_link: https://huggingface.co/WizardLM/WizardLM-70B-V1.0
6
  model_name: WizardLM 70B V1.0
@@ -29,38 +29,48 @@ quantized_by: TheBloke
29
  - Model creator: [WizardLM](https://huggingface.co/WizardLM)
30
  - Original model: [WizardLM 70B V1.0](https://huggingface.co/WizardLM/WizardLM-70B-V1.0)
31
 
 
32
  ## Description
33
 
34
  This repo contains GPTQ model files for [WizardLM's WizardLM 70B V1.0](https://huggingface.co/WizardLM/WizardLM-70B-V1.0).
35
 
36
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
37
 
 
 
38
  ## Repositories available
39
 
40
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ)
41
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GGML)
 
42
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardLM-70B-V1.0)
 
43
 
 
44
  ## Prompt template: Vicuna
45
 
46
  ```
47
  A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
 
48
  ```
49
 
 
 
 
50
  ## Provided files and GPTQ parameters
51
 
52
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
53
 
54
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
55
 
56
- All GPTQ files are made with AutoGPTQ.
57
 
58
  <details>
59
  <summary>Explanation of GPTQ parameters</summary>
60
 
61
  - Bits: The bit size of the quantised model.
62
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
63
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
64
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
65
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
66
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -70,13 +80,16 @@ All GPTQ files are made with AutoGPTQ.
70
 
71
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
72
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
73
- | [main](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
74
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
75
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
76
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
77
- | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
78
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
79
 
 
 
 
80
  ## How to download from branches
81
 
82
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardLM-70B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
@@ -85,75 +98,75 @@ All GPTQ files are made with AutoGPTQ.
85
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ
86
  ```
87
  - In Python Transformers code, the branch is the `revision` parameter; see below.
88
-
 
89
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
90
 
91
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
92
 
93
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
94
 
95
  1. Click the **Model tab**.
96
  2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-70B-V1.0-GPTQ`.
97
  - To download from a specific branch, enter for example `TheBloke/WizardLM-70B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
98
  - see Provided Files above for the list of branches for each option.
99
  3. Click **Download**.
100
- 4. The model will start downloading. Once it's finished it will say "Done"
101
  5. In the top left, click the refresh icon next to **Model**.
102
  6. In the **Model** dropdown, choose the model you just downloaded: `WizardLM-70B-V1.0-GPTQ`
103
  7. The model will automatically load, and is now ready for use!
104
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
105
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
106
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
107
 
 
108
  ## How to use this GPTQ model from Python code
109
 
110
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
111
 
112
- ```
113
- pip3 install auto-gptq
114
- ```
115
 
116
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
117
  ```
 
 
 
 
118
  pip3 uninstall -y auto-gptq
119
  git clone https://github.com/PanQiWei/AutoGPTQ
120
  cd AutoGPTQ
121
  pip3 install .
122
  ```
123
 
124
- Then try the following example code:
 
 
 
 
 
 
 
 
125
 
126
  ```python
127
- from transformers import AutoTokenizer, pipeline, logging
128
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
129
 
130
  model_name_or_path = "TheBloke/WizardLM-70B-V1.0-GPTQ"
131
-
132
- use_triton = False
 
 
 
 
133
 
134
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
135
 
136
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
137
- use_safetensors=True,
138
- trust_remote_code=False,
139
- device="cuda:0",
140
- use_triton=use_triton,
141
- quantize_config=None)
142
-
143
- """
144
- # To download from a specific branch, use the revision parameter, as in this example:
145
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
146
-
147
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
148
- revision="gptq-4bit-32g-actorder_True",
149
- use_safetensors=True,
150
- trust_remote_code=False,
151
- device="cuda:0",
152
- quantize_config=None)
153
- """
154
-
155
  prompt = "Tell me about AI"
156
  prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
 
157
  '''
158
 
159
  print("\n\n*** Generate:")
@@ -164,9 +177,6 @@ print(tokenizer.decode(output[0]))
164
 
165
  # Inference can also be done using transformers' pipeline
166
 
167
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
168
- logging.set_verbosity(logging.CRITICAL)
169
-
170
  print("*** Pipeline:")
171
  pipe = pipeline(
172
  "text-generation",
@@ -180,12 +190,17 @@ pipe = pipeline(
180
 
181
  print(pipe(prompt_template)[0]['generated_text'])
182
  ```
 
183
 
 
184
  ## Compatibility
185
 
186
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
187
 
188
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
189
 
190
  <!-- footer start -->
191
  <!-- 200823 -->
@@ -210,7 +225,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
210
 
211
  **Special thanks to**: Aemon Algiz.
212
 
213
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper WikieΕ‚, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
214
 
215
 
216
  Thank you to all my generous patrons and donaters!
@@ -228,24 +243,59 @@ And thank you again to a16z for their generous grant.
228
 
229
 
230
  <p align="center">
231
- πŸ€— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> <br>
232
  </p>
233
  <p align="center">
234
- πŸ‘‹ Join our <a href="https://discord.gg/bpmeZD7V" target="_blank">Discord</a>
235
  </p>
236
 
 
 
 
 
 
 
 
237
 
238
- <font size=4>
239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240
  | <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>GSM8k</sup> | <sup>HumanEval</sup> | <sup>License</sup>|
241
- | ----- |------| ---- |------|-------| ----- | ----- | ----- |
242
  | <sup>**WizardLM-70B-V1.0**</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>πŸ“ƒ**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup> |<sup>**77.6%**</sup> | <sup> **50.6 pass@1**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
243
  | <sup>WizardLM-13B-V1.2</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> |<sup>55.3%</sup> | <sup>36.6 pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
244
  | <sup>WizardLM-13B-V1.1</sup> |<sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | | <sup>25.0 pass@1</sup>| <sup>Non-commercial</sup>|
245
  | <sup>WizardLM-30B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | | <sup>37.8 pass@1</sup>| <sup>Non-commercial</sup> |
246
  | <sup>WizardLM-13B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | | <sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>|
247
  | <sup>WizardLM-7B-V1.0 </sup>| <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>|
248
- | <sup>WizardCoder-15B-V1.0</sup> | <sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a></sup> | <sup>πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a></sup> | | ||<sup> 57.3 pass@1 </sup> | <sup> <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a></sup> |
249
  </font>
250
 
251
  - πŸ”₯πŸ”₯πŸ”₯ [08/09/2023] We released **WizardLM-70B-V1.0** model.
@@ -264,5 +314,21 @@ And thank you again to a16z for their generous grant.
264
  <b>WizardLM</b> adopts the prompt format from <b>Vicuna</b> and supports **multi-turn** conversation. The prompt should be as following:
265
 
266
  ```
267
- A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: hello, who are you? ASSISTANT:
268
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  inference: false
3
+ license: llama2
4
  model_creator: WizardLM
5
  model_link: https://huggingface.co/WizardLM/WizardLM-70B-V1.0
6
  model_name: WizardLM 70B V1.0
 
29
  - Model creator: [WizardLM](https://huggingface.co/WizardLM)
30
  - Original model: [WizardLM 70B V1.0](https://huggingface.co/WizardLM/WizardLM-70B-V1.0)
31
 
32
+ <!-- description start -->
33
  ## Description
34
 
35
  This repo contains GPTQ model files for [WizardLM's WizardLM 70B V1.0](https://huggingface.co/WizardLM/WizardLM-70B-V1.0).
36
 
37
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
38
 
39
+ <!-- description end -->
40
+ <!-- repositories-available start -->
41
  ## Repositories available
42
 
43
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ)
44
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GGUF)
45
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GGML)
46
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardLM-70B-V1.0)
47
+ <!-- repositories-available end -->
48
 
49
+ <!-- prompt-template start -->
50
  ## Prompt template: Vicuna
51
 
52
  ```
53
  A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
54
+
55
  ```
56
 
57
+ <!-- prompt-template end -->
58
+
59
+ <!-- README_GPTQ.md-provided-files start -->
60
  ## Provided files and GPTQ parameters
61
 
62
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
63
 
64
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
65
 
66
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
67
 
68
  <details>
69
  <summary>Explanation of GPTQ parameters</summary>
70
 
71
  - Bits: The bit size of the quantised model.
72
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
73
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
74
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
75
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
76
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
80
 
81
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
82
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
83
+ | [main](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
84
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
85
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
86
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
87
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
88
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
89
 
90
+ <!-- README_GPTQ.md-provided-files end -->
91
+
92
+ <!-- README_GPTQ.md-download-from-branches start -->
93
  ## How to download from branches
94
 
95
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardLM-70B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
 
98
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardLM-70B-V1.0-GPTQ
99
  ```
100
  - In Python Transformers code, the branch is the `revision` parameter; see below.
101
+ <!-- README_GPTQ.md-download-from-branches end -->
102
+ <!-- README_GPTQ.md-text-generation-webui start -->
103
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
104
 
105
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
 
107
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
108
 
109
  1. Click the **Model tab**.
110
  2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-70B-V1.0-GPTQ`.
111
  - To download from a specific branch, enter for example `TheBloke/WizardLM-70B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
112
  - see Provided Files above for the list of branches for each option.
113
  3. Click **Download**.
114
+ 4. The model will start downloading. Once it's finished it will say "Done".
115
  5. In the top left, click the refresh icon next to **Model**.
116
  6. In the **Model** dropdown, choose the model you just downloaded: `WizardLM-70B-V1.0-GPTQ`
117
  7. The model will automatically load, and is now ready for use!
118
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
119
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
120
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
121
+ <!-- README_GPTQ.md-text-generation-webui end -->
122
 
123
+ <!-- README_GPTQ.md-use-from-python start -->
124
  ## How to use this GPTQ model from Python code
125
 
126
+ ### Install the necessary packages
127
 
128
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
129
 
130
+ ```shell
131
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
132
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
133
  ```
134
+
135
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
136
+
137
+ ```shell
138
  pip3 uninstall -y auto-gptq
139
  git clone https://github.com/PanQiWei/AutoGPTQ
140
  cd AutoGPTQ
141
  pip3 install .
142
  ```
143
 
144
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
145
+
146
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
147
+ ```shell
148
+ pip3 uninstall -y transformers
149
+ pip3 install git+https://github.com/huggingface/transformers.git
150
+ ```
151
+
152
+ ### You can then use the following code
153
 
154
  ```python
155
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
156
 
157
  model_name_or_path = "TheBloke/WizardLM-70B-V1.0-GPTQ"
158
+ # To use a different branch, change revision
159
+ # For example: revision="gptq-4bit-32g-actorder_True"
160
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
161
+ torch_dtype=torch.float16,
162
+ device_map="auto",
163
+ revision="main")
164
 
165
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  prompt = "Tell me about AI"
168
  prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
169
+
170
  '''
171
 
172
  print("\n\n*** Generate:")
 
177
 
178
  # Inference can also be done using transformers' pipeline
179
 
 
 
 
180
  print("*** Pipeline:")
181
  pipe = pipeline(
182
  "text-generation",
 
190
 
191
  print(pipe(prompt_template)[0]['generated_text'])
192
  ```
193
+ <!-- README_GPTQ.md-use-from-python end -->
194
 
195
+ <!-- README_GPTQ.md-compatibility start -->
196
  ## Compatibility
197
 
198
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
199
+
200
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
201
 
202
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
203
+ <!-- README_GPTQ.md-compatibility end -->
204
 
205
  <!-- footer start -->
206
  <!-- 200823 -->
 
225
 
226
  **Special thanks to**: Aemon Algiz.
227
 
228
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper WikieΕ‚, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik BjΓ€reholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
229
 
230
 
231
  Thank you to all my generous patrons and donaters!
 
243
 
244
 
245
  <p align="center">
246
+ πŸ€— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β€’πŸ± <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
247
  </p>
248
  <p align="center">
249
+ πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
250
  </p>
251
 
252
+ ## Unofficial Video Introductions
253
+ Thanks to the enthusiastic friends, their video introductions are more lively and interesting.
254
+ 1. [NEW WizardLM 70b πŸ”₯ Giant Model...Insane Performance](https://www.youtube.com/watch?v=WdpiIXrO4_o)
255
+ 2. [GET WizardLM NOW! 7B LLM KING That Can Beat ChatGPT! I'm IMPRESSED!](https://www.youtube.com/watch?v=SaJ8wyKMBds)
256
+ 3. [WizardLM: Enhancing Large Language Models to Follow Complex Instructions](https://www.youtube.com/watch?v=I6sER-qivYk)
257
+ 4. [WizardCoder AI Is The NEW ChatGPT's Coding TWIN!](https://www.youtube.com/watch?v=XjsyHrmd3Xo)
258
+
259
 
 
260
 
261
+
262
+
263
+ ## News
264
+
265
+ - πŸ”₯πŸ”₯πŸ”₯[2023/08/26] We released **WizardCoder-Python-34B-V1.0** , which achieves the **73.2 pass@1** and surpasses **GPT4 (2023/03/15)**, **ChatGPT-3.5**, and **Claude2** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). For more details, please refer to [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder).
266
+ - [2023/06/16] We released **WizardCoder-15B-V1.0** , which surpasses **Claude-Plus (+6.8)**, **Bard (+15.3)** and **InstructCodeT5+ (+22.3)** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). For more details, please refer to [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder).
267
+
268
+ | Model | Checkpoint | Paper | HumanEval | MBPP | Demo | License |
269
+ | ----- |------| ---- |------|-------| ----- | ----- |
270
+ | WizardCoder-Python-34B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 61.2 | [Demo](http://47.103.63.15:50085/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
271
+ | WizardCoder-15B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 |50.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
272
+ | WizardCoder-Python-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | 55.6 | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
273
+ | WizardCoder-Python-7B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 55.5 | 51.6 | [Demo](http://47.103.63.15:50088/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
274
+ | WizardCoder-3B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 |37.4 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
275
+ | WizardCoder-1B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 |28.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
276
+
277
+ - πŸ”₯ [08/11/2023] We release **WizardMath** Models.
278
+ - πŸ”₯ Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**.
279
+ - πŸ”₯ Our **WizardMath-70B-V1.0** model achieves **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM.
280
+ - πŸ”₯ Our **WizardMath-70B-V1.0** model achieves **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM.
281
+
282
+ | Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License|
283
+ | ----- |------| ---- |------|-------| ----- | ----- |
284
+ | WizardMath-70B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
285
+ | WizardMath-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
286
+ | WizardMath-7B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>|
287
+
288
+
289
+ <font size=4>
290
+
291
  | <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>GSM8k</sup> | <sup>HumanEval</sup> | <sup>License</sup>|
292
+ | ----- |------| ---- |------|-------| ----- | ----- | ----- |
293
  | <sup>**WizardLM-70B-V1.0**</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>πŸ“ƒ**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup> |<sup>**77.6%**</sup> | <sup> **50.6 pass@1**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
294
  | <sup>WizardLM-13B-V1.2</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> |<sup>55.3%</sup> | <sup>36.6 pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
295
  | <sup>WizardLM-13B-V1.1</sup> |<sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | | <sup>25.0 pass@1</sup>| <sup>Non-commercial</sup>|
296
  | <sup>WizardLM-30B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | | <sup>37.8 pass@1</sup>| <sup>Non-commercial</sup> |
297
  | <sup>WizardLM-13B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | | <sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>|
298
  | <sup>WizardLM-7B-V1.0 </sup>| <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>|
 
299
  </font>
300
 
301
  - πŸ”₯πŸ”₯πŸ”₯ [08/09/2023] We released **WizardLM-70B-V1.0** model.
 
314
  <b>WizardLM</b> adopts the prompt format from <b>Vicuna</b> and supports **multi-turn** conversation. The prompt should be as following:
315
 
316
  ```
317
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am WizardLM.</s>......
318
  ```
319
+
320
+ ## Inference WizardLM Demo Script
321
+
322
+ We provide the inference WizardLM demo code [here](https://github.com/nlpxucan/WizardLM/tree/main/demo).
323
+
324
+
325
+ ❗<b>To commen concern about dataset:</b>
326
+
327
+ Recently, there have been clear changes in the open-source policy and regulations of our overall organization's code, data, and models.
328
+
329
+
330
+ Despite this, we have still worked hard to obtain opening the weights of the model first, but the data involves stricter auditing and is in review with our legal team .
331
+
332
+ Our researchers have no authority to publicly release them without authorization.
333
+
334
+ Thank you for your understanding.