Transformers
GGUF
llama
uncensored
TheBloke commited on
Commit
6f155b3
1 Parent(s): d5aee61

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -50,7 +50,7 @@ This repo contains GGUF format model files for [Eric Hartford's Wizardlm 13B Unc
50
  <!-- README_GGUF.md-about-gguf start -->
51
  ### About GGUF
52
 
53
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
54
 
55
  Here is an incomplate list of clients and libraries that are known to support GGUF:
56
 
@@ -90,7 +90,7 @@ ASSISTANT:
90
  <!-- compatibility_gguf start -->
91
  ## Compatibility
92
 
93
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
94
 
95
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
96
 
@@ -154,7 +154,7 @@ Then click Download.
154
  I recommend using the `huggingface-hub` Python library:
155
 
156
  ```shell
157
- pip3 install huggingface-hub>=0.17.1
158
  ```
159
 
160
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -183,25 +183,25 @@ pip3 install hf_transfer
183
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
184
 
185
  ```shell
186
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardLM-13B-Uncensored-GGUF WizardLM-13B-Uncensored.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
187
  ```
188
 
189
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
190
  </details>
191
  <!-- README_GGUF.md-how-to-download end -->
192
 
193
  <!-- README_GGUF.md-how-to-run start -->
194
  ## Example `llama.cpp` command
195
 
196
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
197
 
198
  ```shell
199
- ./main -ngl 32 -m WizardLM-13B-Uncensored.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are a helpful AI assistant.\n\nUSER: {prompt}\nASSISTANT:"
200
  ```
201
 
202
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
203
 
204
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
205
 
206
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
207
 
@@ -215,22 +215,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
215
 
216
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
217
 
218
- ### How to load this model from Python using ctransformers
219
 
220
  #### First install the package
221
 
222
- ```bash
 
 
223
  # Base ctransformers with no GPU acceleration
224
- pip install ctransformers>=0.2.24
225
  # Or with CUDA GPU acceleration
226
- pip install ctransformers[cuda]>=0.2.24
227
- # Or with ROCm GPU acceleration
228
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
229
- # Or with Metal GPU acceleration for macOS systems
230
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
231
  ```
232
 
233
- #### Simple example code to load one of these GGUF models
234
 
235
  ```python
236
  from ctransformers import AutoModelForCausalLM
@@ -243,7 +245,7 @@ print(llm("AI is going to"))
243
 
244
  ## How to use with LangChain
245
 
246
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
247
 
248
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
249
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
50
  <!-- README_GGUF.md-about-gguf start -->
51
  ### About GGUF
52
 
53
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
54
 
55
  Here is an incomplate list of clients and libraries that are known to support GGUF:
56
 
 
90
  <!-- compatibility_gguf start -->
91
  ## Compatibility
92
 
93
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
94
 
95
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
96
 
 
154
  I recommend using the `huggingface-hub` Python library:
155
 
156
  ```shell
157
+ pip3 install huggingface-hub
158
  ```
159
 
160
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
183
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
184
 
185
  ```shell
186
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardLM-13B-Uncensored-GGUF WizardLM-13B-Uncensored.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
187
  ```
188
 
189
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
190
  </details>
191
  <!-- README_GGUF.md-how-to-download end -->
192
 
193
  <!-- README_GGUF.md-how-to-run start -->
194
  ## Example `llama.cpp` command
195
 
196
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
197
 
198
  ```shell
199
+ ./main -ngl 32 -m WizardLM-13B-Uncensored.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are a helpful AI assistant.\n\nUSER: {prompt}\nASSISTANT:"
200
  ```
201
 
202
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
203
 
204
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
205
 
206
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
207
 
 
215
 
216
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
217
 
218
+ ### How to load this model in Python code, using ctransformers
219
 
220
  #### First install the package
221
 
222
+ Run one of the following commands, according to your system:
223
+
224
+ ```shell
225
  # Base ctransformers with no GPU acceleration
226
+ pip install ctransformers
227
  # Or with CUDA GPU acceleration
228
+ pip install ctransformers[cuda]
229
+ # Or with AMD ROCm GPU acceleration (Linux only)
230
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
231
+ # Or with Metal GPU acceleration for macOS systems only
232
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
233
  ```
234
 
235
+ #### Simple ctransformers example code
236
 
237
  ```python
238
  from ctransformers import AutoModelForCausalLM
 
245
 
246
  ## How to use with LangChain
247
 
248
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
249
 
250
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
251
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)