File size: 27,801 Bytes
0e37cfb
 
45e05f3
4253504
 
 
45e05f3
 
 
 
 
 
 
0e37cfb
 
fa0205b
11c8182
 
 
0e37cfb
 
 
11c8182
0e37cfb
 
11c8182
0e37cfb
 
11c8182
 
fa0205b
0e37cfb
45e05f3
 
 
0e37cfb
45e05f3
 
0e37cfb
45e05f3
0e37cfb
45e05f3
0e37cfb
45e05f3
 
 
0e37cfb
45e05f3
 
 
 
 
 
 
 
debc43f
 
45e05f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
debc43f
45e05f3
 
 
 
debc43f
45e05f3
0e37cfb
45e05f3
0e37cfb
 
 
45e05f3
 
0e37cfb
45e05f3
 
 
 
 
 
 
 
0e37cfb
45e05f3
 
0e37cfb
45e05f3
0e37cfb
45e05f3
0e37cfb
45e05f3
 
 
 
0e37cfb
45e05f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e37cfb
fa0205b
11c8182
fa0205b
0e37cfb
fa0205b
0e37cfb
11c8182
debc43f
45e05f3
0e37cfb
fa0205b
 
45e05f3
 
fa0205b
 
 
 
 
 
 
0e37cfb
fa0205b
11c8182
 
45e05f3
11c8182
fa0205b
 
11c8182
 
 
fa0205b
 
45e05f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e37cfb
 
 
 
 
45e05f3
0e37cfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4b2288
0e37cfb
45e05f3
0e37cfb
 
 
 
 
 
 
45e05f3
0e37cfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45e05f3
0e37cfb
 
 
45e05f3
0e37cfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4b2288
0e37cfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4b2288
0e37cfb
f4b2288
0e37cfb
45e05f3
0e37cfb
 
 
 
45e05f3
0e37cfb
 
 
 
 
 
 
 
f4b2288
0e37cfb
 
 
 
 
 
 
 
 
f4b2288
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
---
license: other
model_name: WizardLM 13B 1.0
base_model: WizardLM/WizardLM-13B-V1.0
inference: false
model_creator: WizardLM
model_type: llama
prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
  The assistant gives helpful, detailed, and polite answers to the user''s questions.
  USER: {prompt} ASSISTANT:

  '
quantized_by: TheBloke
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# WizardLM 13B 1.0 - GPTQ
- Model creator: [WizardLM](https://huggingface.co/WizardLM)
- Original model: [WizardLM 13B 1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)

<!-- description start -->
## Description

This repo contains GPTQ model files for [WizardLM's WizardLM 13B 1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0).

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WizardLM-13B-1.0-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGUF)
* [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/wizardLM-13B-1.0-fp16)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Vicuna

```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:

```

<!-- prompt-template end -->


<!-- README_GPTQ.md-provided-files start -->
## Provided files and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch.  See below for instructions on fetching from different branches.

All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.

<details>
  <summary>Explanation of GPTQ parameters</summary>

- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used.  Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.

</details>

| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| main | 4 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 8.11 GB | Yes | 4-bit, without Act Order and group size 128g. |

<!-- README_GPTQ.md-provided-files end -->

<!-- README_GPTQ.md-download-from-branches start -->
## How to download from branches

- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardLM-13B-1.0-GPTQ:main`
- With Git, you can clone a branch with:
```
git clone --single-branch --branch main https://huggingface.co/TheBloke/WizardLM-13B-1.0-GPTQ
```
- In Python Transformers code, the branch is the `revision` parameter; see below.
<!-- README_GPTQ.md-download-from-branches end -->
<!-- README_GPTQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-13B-1.0-GPTQ`.
  - To download from a specific branch, enter for example `TheBloke/WizardLM-13B-1.0-GPTQ:main`
  - see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `WizardLM-13B-1.0-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
  * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
<!-- README_GPTQ.md-text-generation-webui end -->

<!-- README_GPTQ.md-use-from-python start -->
## How to use this GPTQ model from Python code

### Install the necessary packages

Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

```shell
pip3 install transformers>=4.32.0 optimum>=1.12.0
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/  # Use cu117 if on CUDA 11.7
```

If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .
```

### For CodeLlama models only: you must use Transformers 4.33.0 or later.

If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
```shell
pip3 uninstall -y transformers
pip3 install git+https://github.com/huggingface/transformers.git
```

### You can then use the following code

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/WizardLM-13B-1.0-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:

'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_GPTQ.md-use-from-python end -->

<!-- README_GPTQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).

[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
<!-- README_GPTQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: WizardLM's WizardLM 13B 1.0


<!-- header start -->
<div style="width: 100%;">
    <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<!-- header end -->

# WizardLM 13B 1.0 fp16

These files are fp16 unquantised format model files for [WizardLM 13B 1.0](https://huggingface.co/victor123/WizardLM-13B-1.0).

It is the result of merging the deltas provided in the above repo.

## Need support? Want to discuss? I now have a Discord!

Join me at: https://discord.gg/UBgz4VXf

## Other repositories available

* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GPTQ)
* [4-bit, 5-bit and 8-bit GGML models for CPU(+GPU) inference](https://huggingface.co/TheBloke/WizardLM-13B-1.0-GGML)
* [Merged, unquantised fp16 model in HF format](https://huggingface.co/TheBloke/WizardLM-13B-1.0-HF)

## Prompt Template

```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
USER: prompt goes here
ASSISTANT:
```

<!-- footer start -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.

Thank you to all my generous patrons and donaters!
<!-- footer end -->

# Original model card

## WizardLM: An Instruction-following LLM Using Evol-Instruct
Empowering Large Pre-Trained Language Models to Follow Complex Instructions

<p align="center" width="100%">
<a ><img src="imgs/WizardLM.png" alt="WizardLM" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a>
</p>

[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)

## News

At present, our core contributors are preparing the **33B** version and we expect to empower WizardLM with the ability to perform instruction evolution itself, aiming to evolve your specific data at a low cost.

- 🔥 We released **13B** version of **WizardLM** trained with **250k** evolved instructions (from ShareGPT). Checkout the [Demo_13B](https://a6d4f31b5a1ee33f.gradio.app/), [Demo_13B_bak](https://e79c80d2c2379e77.gradio.app) and the GPT-4 evaluation. Please download our delta model at the following [link](https://huggingface.co/victor123/WizardLM-13B-1.0).
- 🔥 We released **7B** version of **WizardLM** trained with **70k** evolved instructions (from Alpaca data). Checkout the [paper](https://arxiv.org/abs/2304.12244) and [Demo_7B](https://f195ccdce69a86d5.gradio.app) , [Demo_7B_bak](https://ce25bd0feced0f77.gradio.app)
- &#x1F4E3; We are looking for highly motivated students to join us as interns to create more intelligent AI together. Please contact [email protected]

<!-- Although on our **complexity-balanced test set**, **WizardLM-7B has more cases that are preferred by human labelers than ChatGPT** in the high-complexity instructions (difficulty level >= 8), it still lags behind ChatGPT on the entire test set, and we also consider WizardLM to still be in a **baby state**. This repository will **continue to improve WizardLM**, train on larger scales, add more training data, and innovate more advanced large-model training methods. -->

<b>Note for 13B model usage:</b> To obtain results **identical to our demo**, please strictly follow the prompts and invocation methods provided in the **"src/infer_wizardlm13b.py"** to use our 13B model for inference. Unlike the 7B model, the 13B model adopts the prompt format from Vicuna and supports **multi-turn** conversation.

<b>Note for demo usage:</b> We only recommend using **English** to experience our model. Support for other languages will be introduced in the future. The demo currently only supports **single-turn** conversation.

### GPT-4 automatic evaluation

We adopt the automatic evaluation framework based on GPT-4 proposed by FastChat to assess the performance of chatbot models. As shown in the following figure, WizardLM-13B achieved better results than Vicuna-13b.
<p align="center" width="100%">
<a ><img src="imgs/WizarLM13b-GPT4.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>

### WizardLM-13B performance on different skills.

The following figure compares WizardLM-13B and ChatGPT’s skill on Evol-Instruct testset. The result indicates that WizardLM-13B achieves 89.1% of ChatGPT’s performance on average, with almost 100% (or more than) capacity on 10 skills, and more than 90% capacity on 22 skills.

<p align="center" width="100%">
<a ><img src="imgs/evol-testset_skills-13b.png" alt="WizardLM" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>

## Call for Feedbacks
We welcome everyone to use your professional and difficult instructions to evaluate WizardLM, and show us examples of poor performance and your suggestions in the [issue discussion](https://github.com/nlpxucan/WizardLM/issues) area. We are focusing on improving the Evol-Instruct now and hope to relieve existing weaknesses and issues in the the next version of WizardLM. After that, we will open the code and pipeline of up-to-date Evol-Instruct algorithm and work with you together to improve it.

## Unofficial Video Introductions
Thanks to the enthusiastic friends, their video introductions are more lively and interesting.
1. [GET WizardLM NOW! 7B LLM KING That Can Beat ChatGPT! I'm IMPRESSED!](https://www.youtube.com/watch?v=SaJ8wyKMBds)
2. [WizardLM: Enhancing Large Language Models to Follow Complex Instructions](https://www.youtube.com/watch?v=I6sER-qivYk)

## Case Show
We just sample some cases to demonstrate the performance of WizardLM and ChatGPT on data of varying difficulty, and the details pls refer [Case Show](https://github.com/nlpxucan/WizardLM/blob/main/src/case_show.md).

## Overview of Evol-Instruct

[Evol-Instruct](https://github.com/nlpxucan/evol-instruct) is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.

<p align="center" width="100%">
<a ><img src="imgs/git_overall.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
</p>

<p align="center" width="100%">
<a ><img src="imgs/git_running.png" alt="WizardLM" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
</p>

## Contents

1. [Online Demo](#online-demo)

2. [Training Data](#training-data)

3. [WizardLM Weights](#wizardlm-weights)

4. [Fine-tuning](#fine-tuning)

5. [Distributed Fine-tuning](#distributed-Fine-tuning)

6. [Inference](#inference)

7. [Evaluation](#evaluation)

8. [Citation](#citation)

9. [Disclaimer](#disclaimer)

## Online Demo

We will provide our latest models for you to try for as long as possible. If you find a link is not working, please try another one. At the same time, please try as many **real-world** and **challenging** problems that you encounter in your work and life as possible. We will continue to evolve our models with your feedbacks.

[Demo Link](https://011fc8477ad734d7.gradio.app)

[Demo Backup 1](https://1825e531c43a23c7.gradio.app)




## Training Data

[`alpaca_evol_instruct_70k.json`](https://huggingface.co/datasets/victor123/evol_instruct_70k) contains 70K instruction-following data generated from Evol-Instruct. We used it for fine-tuning the WizardLM model.
This JSON file is a list of dictionaries, each dictionary contains the following fields:

- `instruction`: `str`, describes the task the model should perform. Each of the 70K instructions is unique.
- `output`: `str`, the answer to the instruction as generated by `gpt-3.5-turbo`.



## WizardLM Weights
We release [WizardLM] weights as delta weights to comply with the LLaMA model license.
You can add our delta to the original LLaMA weights to obtain the WizardLM weights. Instructions:
1. Get the original LLaMA weights in the huggingface format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama).
2. Please download our delta model at the following [link](https://huggingface.co/victor123/WizardLM)
3. Use the following scripts to get WizardLM weights by applying our delta:
```
python src/weight_diff_wizard.py recover --path_raw <path_to_step_1_dir> --path_diff <path_to_step_2_dir> --path_tuned <path_to_store_recovered_weights>
```

## Fine-tuning

We fine-tune WizardLM using code from [Llama-X](https://github.com/AetherCortex/Llama-X).
We fine-tune LLaMA-7B and LLaMA-13B with the following hyperparameters:

| Hyperparameter | LLaMA-7B | LLaMA-13B|
|----------------|----------|----------|
| Batch size     | 64       | 384      |
| Learning rate  | 2e-5     | 2e-5     |
| Epochs         | 3        | 3        |
| Max length     | 2048     | 2048     |
| Warmup step    | 2        | 50       |
| LR scheduler   | cosine   | cosine   |

To reproduce our fine-tuning of WizardLM, please follow the following steps:
1. According to the instructions of [Llama-X](https://github.com/AetherCortex/Llama-X), install the environment, download the training code, and deploy.
2. Replace the train.py with the train_freeform.py in our repo(src/train_freeform.py)
3. Execute the following training command:
```bash
deepspeed train_freeform.py \
    --model_name_or_path /path/to/llama-7B/hf \
    --data_path /path/to/alpaca_evol_instruct_70k.json \
    --output_dir /path/to/wizardlm-7B/hf/ft \
    --num_train_epochs 3 \
    --model_max_length 2048 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 1 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 800 \
    --save_total_limit 3 \
    --learning_rate 2e-5 \
    --warmup_steps 2 \
    --logging_steps 2 \
    --lr_scheduler_type "cosine" \
    --report_to "tensorboard" \
    --gradient_checkpointing True \
    --deepspeed configs/deepspeed_config.json \
    --fp16 True
```

## Distributed Fine-tuning
See [Distributed Fine-tuning](./doc/distributed_finetune.md)

## Inference

We provide the decoding script for WizardLM, which reads a input file and generates corresponding responses for each sample, and finally consolidates them into an output file.

You can specify `base_model`, `input_data_path` and `output_data_path` in src\inference_wizardlm.py to set the decoding model, path of input file and path of output file.
The decoding command:
```
python src\inference_wizardlm.py
```

### Evaluation

To evaluate Wizard, we conduct human evaluation on the inputs from our human instruct evaluation set [`WizardLM_testset.jsonl`](./data/WizardLM_testset.jsonl) . This evaluation set was collected by the authors and covers a diverse list of user-oriented instructions including difficult Coding Generation & Debugging, Math, Reasoning, Complex Formats, Academic Writing, Extensive Disciplines, and so on. We performed a blind pairwise comparison between Wizard and baselines. Specifically, we recruit 10 well-educated annotators to rank the models from 1 to 5 on relevance, knowledgeable, reasoning, calculation and accuracy.

WizardLM achieved significantly better results than Alpaca and Vicuna-7b.
<p align="center" width="60%">
<a ><img src="imgs/win.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
</p>

In the high-difficulty section of our test set (difficulty level >= 8), WizardLM even outperforms ChatGPT, with a win rate 7.9% larger than Chatgpt (42.9% vs. 35.0%). This indicates that our method can significantly improve the ability of large language models to handle complex instructions.
<p align="center" width="60%">
<a ><img src="imgs/windiff.png" alt="WizardLM" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a>
</p>

### Citation

Please cite the repo if you use the data or code in this repo.

```
@misc{xu2023wizardlm,
      title={WizardLM: Empowering Large Language Models to Follow Complex Instructions},
      author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
      year={2023},
      eprint={2304.12244},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
## Disclaimer

The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardLM is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.