File size: 16,601 Bytes
4fd415f
6c9ac35
 
 
4fd415f
 
 
 
6c9ac35
 
4fd415f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
---
language:
- ja
license: llama2
datasets:
- snow_simplified_japanese_corpus
- khalidalt/tydiqa-goldp
- csebuetnlp/xlsum
model_name: OpenOrca Stx
base_model: lightblue/openorca_stx
inference: false
model_creator: Lightblue Technology Inc.
model_type: llama
prompt_template: '{prompt}

  '
quantized_by: TheBloke
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# OpenOrca Stx - AWQ
- Model creator: [Lightblue Technology Inc.](https://huggingface.co/lightblue)
- Original model: [OpenOrca Stx](https://huggingface.co/lightblue/openorca_stx)

<!-- description start -->
## Description

This repo contains AWQ model files for [Lightblue Technology Inc.'s OpenOrca Stx](https://huggingface.co/lightblue/openorca_stx).


### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.

It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/OpenOrca_Stx-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenOrca_Stx-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF)
* [Lightblue Technology Inc.'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lightblue/openorca_stx)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: None

```
{prompt}

```

<!-- prompt-template end -->


<!-- README_AWQ.md-provided-files start -->
## Provided files and AWQ parameters

For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.

Models are released as sharded safetensors files.

| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/OpenOrca_Stx-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB

<!-- README_AWQ.md-provided-files end -->

<!-- README_AWQ.md-use-from-vllm start -->
## Serving this model from vLLM

Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

- When using vLLM as a server, pass the `--quantization awq` parameter, for example:

```shell
python3 python -m vllm.entrypoints.api_server --model TheBloke/OpenOrca_Stx-AWQ --quantization awq
```

When using vLLM from Python code, pass the `quantization=awq` parameter, for example:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/OpenOrca_Stx-AWQ", quantization="awq")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->

<!-- README_AWQ.md-use-from-python start -->
## How to use this AWQ model from Python code

### Install the necessary packages

Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later

```shell
pip3 install autoawq
```

If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```

### You can then try the following example code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_name_or_path = "TheBloke/OpenOrca_Stx-AWQ"

# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)

prompt = "Tell me about AI"
prompt_template=f'''{prompt}

'''

print("\n\n*** Generate:")

tokens = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    max_new_tokens=512
)

print("Output: ", tokenizer.decode(generation_output[0]))

# Inference can also be done using transformers' pipeline
from transformers import pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_AWQ.md-use-from-python end -->

<!-- README_AWQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).

[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
<!-- README_AWQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjรคreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, ์ค€๊ต ๊น€, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, ้˜ฟๆ˜Ž, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: Lightblue Technology Inc.'s OpenOrca Stx

# About
This model is Lightblue's QLoRA finetune of OpenOrca's [Open-Orca/OpenOrcaxOpenChat-Preview2-13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B) model on Japanese fine-tuning datasets.

This model specialises on answering **Closed Question Answering** in Japanese. Input a piece of reference text, ask a question, and see the model answer based on the reference text.

We trained on equal samples of the following three datasets:
* [SNOW](https://huggingface.co/datasets/snow_simplified_japanese_corpus) 
* [TyDiQA (Ja)](https://huggingface.co/datasets/khalidalt/tydiqa-goldp) 
* [XLSUM (Ja)](https://huggingface.co/datasets/csebuetnlp/xlsum) 

which resulted in a dataset of 13,167 samples total.

These three datasets were chosen as they represent three distinct fine-tuning tasks (Text simplification, question answering, and text summarization, respectively) which we hypothesize can help to improve the language models suitability for dealing with Japanese data.
These three datasets make up the model name: STX.

With these datasets, we achieve the following scores on the JGLUE benchmark:

| Model Name             | Open-Orca/OpenOrcaxOpenChat-Preview2-13B | lightblue/openorca_stx |
|------------------------|------------------------------------------|------------------------|
| jsquad-1.1-0.3         | 0.692                                    | 0.836                  |
| jcommonsenseqa-1.1-0.3 | 0.831                                    | 0.782                  |
| jnli-1.1-0.3           | 0.504                                    | 0.48                   |
| marc_ja-1.1-0.3        | 0.936                                    | 0.959                  |

Our model achieves much better results on the question answering benchmark (JSQuAD) than the base checkpoint without monstrous degradation of performance on multi-choice question benchmarks (JCommonSense, JNLI, MARC-Ja) purely through QLoRA training.
This shows the potential for applying strong language models such as [Open-Orca/OpenOrcaxOpenChat-Preview2-13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B) to minimal QLoRA fine-tuning using Japanese fine-tuning datasets to achieve better results at narrow NLP tasks.

# How to use

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(
    model_dir, torch_dtype=torch.bfloat16, device_map='auto',
)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

def do_closed_qa(context, question):
    return context + "\n\n" + question

test_article = """ใ€€ใƒขใƒŽใƒžใƒใฎใƒฌใƒ‘ใƒผใƒˆใƒชใƒผใซใ€Œใƒชใƒผใƒใƒปใƒžใ‚คใ‚ฑใƒซ้ธๆ‰‹ใ€ใŒใ‚ใ‚‹ใƒฌใ‚คใ‚ถใƒผใƒฉใƒขใƒณRGใ•ใ‚“ใ€‚ๆœฌไบบๅ…ฌ่ชใฎใƒขใƒŽใƒžใƒใงใ™ใŒใ€ใƒฉใ‚ฐใƒ“ใƒผใƒ•ใ‚กใƒณใฎๅๅฟœใซๅฐ‘ใ—้ฉšใ„ใŸใใ†ใงใ™ใ€‚
ใ€€ใƒชใƒผใƒใƒปใƒžใ‚คใ‚ฑใƒซ้ธๆ‰‹ใฎใƒขใƒŽใƒžใƒใฏใ€ไฝ•ใŒใใฃใ‹ใ‘ใงใ™ใ‹ใ€‚
ใ€Œ2015ๅนดใฎใƒฏใƒผใƒซใƒ‰ใ‚ซใƒƒใƒ—๏ผˆWๆฏ๏ผ‰ใ‚คใƒณใ‚ฐใƒฉใƒณใƒ‰ๅคงไผšใงๆ—ฅๆœฌใŒๅ—ใ‚ขใƒ•ใƒชใ‚ซใ‚’ๅ€’ใ—ใŸๆฌกใฎๆ—ฅใŒใ€ไบฌ้ƒฝใงใฎ็•ช็ต„ใƒญใ‚ฑใงใ—ใŸใ€‚ๅฝ“ๆ™‚ใฏใ€ใ‚ขใƒƒใƒ—ใƒซใฎๅ…ฑๅŒๅ‰ตๆฅญ่€…ใ‚นใƒ†ใ‚ฃใƒผใƒ–ใƒปใ‚ธใƒงใƒ–ใ‚บใฎใƒขใƒŽใƒžใƒใฐใ‹ใ‚Šใงใ—ใŸใŒใ€ไธ€็ท’ใซใƒญใ‚ฑใ‚’ใ—ใฆใ„ใŸใ‚ธใƒฃใƒณใ‚ฐใƒซใƒใ‚ฑใƒƒใƒˆใ‹ใ‚‰ใ€Žใƒชใƒผใƒใƒปใƒžใ‚คใ‚ฑใƒซใซไผผใฆใพใ™ใ‚ˆใ€‚ใ‚ธใƒงใƒ–ใ‚บใฎใพใพใ€ใ„ใ‘ใ‚‹ใ‚“ใ˜ใ‚ƒใชใ„ใงใ™ใ‹๏ผŸใ€ใจ่จ€ใ‚ใ‚ŒใŸใฎใŒๅง‹ใพใ‚Šใงใ™ใ€
ใ€ŒใŸใ ใ€ใฟใ‚“ใช็Ÿฅ่ญ˜ใŒใชใ„ใ€‚ใƒฉใ‚ฐใƒ“ใƒผใ‚ทใƒงใƒƒใƒ—ใ‚’ๆŽขใ—ใ€ๆ—ฅๆœฌไปฃ่กจใฎใƒฆใƒ‹ใƒ›ใƒผใƒ ใŒๅฃฒใ‚Šๅˆ‡ใ‚Œใ ใฃใŸใฎใงใ€่ตคใฃใฝใ„ใƒฆใƒ‹ใƒ›ใƒผใƒ ใจใƒ”ใƒใƒ”ใƒใฎ็Ÿญใƒ‘ใƒณใ‚’ใฏใ„ใฆใ€‚ใจใ‚Šใ‚ใˆใšSNSใงใ€Žใƒชใƒผใƒใƒปใƒžใ‚คใ‚ฑใƒซใงใ™ใ€ใฃใฆใ„ใฃใฑใ„ๅ†™็œŸใ‚’่ผ‰ใ›ใพใ—ใŸใ€
ใ€Œใ™ใ‚‹ใจใ€ใใ‚Œใ‚’่ฆ‹ใŸใƒชใƒผใƒใ•ใ‚“ๆœฌไบบใ‹ใ‚‰DM๏ผˆใƒ€ใ‚คใƒฌใ‚ฏใƒˆใƒกใƒƒใ‚ปใƒผใ‚ธ๏ผ‰ใŒๅฑŠใใพใ—ใŸใ€‚ใ€ŽใƒขใƒŽใƒžใƒใ‚ใ‚ŠใŒใจใ†ใ”ใ–ใ„ใพใ™ใ€‚ใ‚‚ใ—ใƒขใƒŽใƒžใƒใ‚’ใ™ใ‚‹ใชใ‚‰ใ€ๅƒ•ใฎใƒฆใƒ‹ใƒ›ใƒผใƒ ใ‚’้€ใ‚Šใพใ™ใฎใง็€ใฆใใ ใ•ใ„ใ€ใจใ€‚WๆฏๅพŒใซใƒฆใƒ‹ใƒ›ใƒผใƒ 2็€ใจใƒ‘ใƒณใƒ„ใ‚„ใ‚ฝใƒƒใ‚ฏใ‚นใชใฉใ‚’ใปใ‚“ใพใซ้€ใฃใฆใใฆใใ‚Œใพใ—ใŸใ€‚ไปŠ็€ใฆใ„ใ‚‹ใฎใŒใใ‚Œใงใ™ใ€
ใ“ใ‚Œใพใงใ€ๆ•ฐใ€…ใฎ่‘—ๅไบบใ‚’ใƒขใƒŽใƒžใƒใ—ใฆใ“ใ‚‰ใ‚Œใพใ—ใŸใ€‚ใƒชใƒผใƒ้ธๆ‰‹ใฎใƒใ‚ฟใฎๅ้Ÿฟใฏใ„ใ‹ใŒใงใ—ใŸใ‹ใ€‚
ใ€€ใ€Œๅƒ•ใฏใƒฉใ‚ฐใƒ“ใƒผ็ตŒ้จ“ใŒใชใ„ใงใ™ใ—ใ€ใƒฉใ‚ฐใƒ“ใƒผใ‚’ๅ…จ็„ถ็Ÿฅใ‚‰ใชใ‹ใฃใŸใ‘ใฉใ€ใ‚„ใฃใฑใ‚Šๆœฌไบบใ‹ใ‚‰ใƒฆใƒ‹ใƒ›ใƒผใƒ ใ‚’้ ‚ใ„ใฆใ‚‹ใฃใฆใ„ใ†โ€œๅฐ็ฑ ๏ผˆใ„ใ‚“ใ‚ใ†๏ผ‰โ€ใฟใŸใ„ใชใฎใŒใ‚ใฃใฆใ€‚ใ€Žใ‚ใ„ใคใฏใƒชใƒผใƒใ•ใ‚“ๆœฌไบบใซ่ชใ‚ใ‚‰ใ‚Œใฆใ‚‹ใ€ใจใ€‚ไธ€็›ฎ็ฝฎใ‹ใ‚Œใฆใ„ใ‚‹ใฎใ‹ใชใจๆ„Ÿใ˜ใพใ™ใ€
ใ€€ใ€Œใ‚„ใฃใฆใ„ใ‚‹ใ“ใจใฏใ€่ฆ‹ใŸ็›ฎใ‚’ๆœฌไบบใซๅฏ„ใ›ใฆใƒฏใƒณใƒใƒผใƒ ใฃใฆ่จ€ใ†ใ ใ‘ใชใ‚“ใงใ™ใ‘ใฉใญใ€‚ใใ‚Œใงใ‚‚ใ€Žใ‚ใ‚ใ€ใƒชใƒผใƒใ•ใ‚“ใ ใ€ใจ่จ€ใฃใฆใ‚‚ใ‚‰ใˆใพใ™ใ€
ใ€€ใ€Œใƒชใƒผใƒใ•ใ‚“ใจๅฎŸ้š›ใซไผšใ†ใ“ใจใชใ‚“ใฆใ€็ฐกๅ˜ใซใฏใงใใชใ„ใ˜ใ‚ƒใชใ„ใงใ™ใ‹ใ€‚ใงใ‚‚ใ€ใƒชใƒผใƒใ•ใ‚“ใฎใพใญใ‚’ใ—ใฆใ„ใ‚‹RGใซใฏไผšใˆใŸใ‚ใ€ใฟใŸใ„ใช๏ผˆ็ฌ‘๏ผ‰ใ€‚ไฝ•ใ ใ‚ใ†ใชใ€ๆœ‰ๅใช็ฅž็คพใฎๆ”ฏ็คพใฎใ‚ˆใ†ใชๅญ˜ๅœจใงใ™ใ‹ใญใ€‚ใ‚ใ‚ŠใŒใŸใŒใ‚‰ใ‚Œใ‚‹ใจใ„ใ†ๆ„ๅ‘ณใงใฏไป–ใฎใƒขใƒŽใƒžใƒใจใฏใ™ใ”ใ้•ใ„ใพใ™ใญใ€
"""

test_question = "ใ€€ใƒชใƒผใƒใƒปใƒžใ‚คใ‚ฑใƒซใฏไฝ•ใ‚’้€ใฃใฆใใพใ—ใŸใ‹๏ผŸ"

pipe(do_closed_qa(test_article, question), max_new_tokens=128, temperature=0)[0]["generated_text"]
# "ใƒฆใƒ‹ใƒ›ใƒผใƒ 2็€ใจใƒ‘ใƒณใƒ„ใ‚„ใ‚ฝใƒƒใ‚ฏใ‚นใชใฉ"
```


# Training details

This model was trained for 1000 steps (1.2 epochs) with the model being evaluated every 50 steps. We then chose the best model from these evaluations based on validation loss.
We used the [qlora](https://github.com/artidoro/qlora) package from artidoro.
We trained with the following hyperparameters:

```
Per device evaluation batch size: 16
Per device train batch size: 8
LoRA (lora_r): 64
LoRA alpha (lora_alpha): 16
LoRA modules: all
Double quantization: Enabled
Quantization type: nf4
BF16: Enabled
Bits: 4
Warmup ratio: 0.03
Learning rate scheduler type: Constant
Gradient checkpointing: Enabled
Gradient accumulation steps: 2
Learning rate: 0.0002
Adam beta2: 0.999
Maximum gradient norm: 0.3
LoRA dropout: 0.05
Weight decay: 0.0
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/UWiE7z5tG8t_vdSFrb5WC.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/_fKBf9sdq9UAKKYMxM6ad.png)