--- base_model: Qwen/Qwen2.5-Coder-14B-Instruct tags: - text-generation-inference - transformers - qwen2 - trl license: apache-2.0 language: - en datasets: - Tesslate/Tessa-T1-Dataset --- # 🚀 **Model Card for Tess-T1** --- ## 🌟 **Model Overview** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/GfOobqW0RbMdS0pV0y4JM.png) "Landing Page" Tess-T1 is an innovative transformer-based **React reasoning model**, fine-tuned from the powerful **Qwen2.5-Coder-14B-Instruct** base model. Designed specifically for React frontend development, Tess-T1 leverages advanced reasoning to autonomously generate well-structured, semantic React components. Its integration into agent systems makes it a powerful tool for automating web interface development and frontend code intelligence. --- ## 🎯 **Model Highlights** - ✅ **React-specific Reasoning**: Accurately generates functional and semantic React components. - ✅ **Agent Integration**: Seamlessly fits into AI-driven coding agents and autonomous frontend systems. - ✅ **Context-Aware Generation**: Effectively understands and utilizes UI context to provide relevant code solutions. --- ## 📸 **Example Outputs** *See examples demonstrating the powerful reasoning and component creation capabilities of Tess-T1:* ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/54P6h76jEN6jLz7iMO78V.png) Make a functioning AI training waitlist ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/zU3yln3xGdUIywGRtxSij.png) Prompt: "add in a calendar" ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/eDpCj-eV3DmDjkDdB1Ux1.png) --- ## 🛠️ **Use Cases** ### ✅ **Recommended Uses** - **Automatic Component Generation**: Quickly produce React components from textual prompts. - **Agent-based Web Development**: Integrate into automated coding systems for faster frontend workflows. - **Frontend Refactoring**: Automate the optimization and semantic enhancement of React code. ### ⚠️ **Limitations** - **Focused on React**: Limited use outside React.js frameworks. - **Complex State Management**: May require manual adjustments for highly dynamic state management scenarios. --- ## 📦 **How to Use** ### **Inference Example** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "smirki/Tess-T1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") prompt = """<|im_start|>user Create a React component for a user profile card.<|im_end|> <|im_start|>assistant <|im_start|>think """ inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=1500, do_sample=True, temperature=0.7) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ## 📊 **Performance and Evaluation** - **Strengths**: - Strong semantic React component generation. - Excellent integration capabilities with agent-based systems. - **Weaknesses**: - Complex JavaScript logic may require manual post-processing. --- ## 💻 **Technical Specifications** - **Architecture**: Transformer-based LLM - **Base Model**: Qwen2.5-Coder-14B-Instruct - **Precision**: bf16 mixed precision, quantized to q8 - **Hardware Requirements**: Recommended 12GB VRAM - **Software Dependencies**: - Hugging Face Transformers - PyTorch --- ## 📖 **Citation** ```bibtex @misc{smirki_Tess-T1, title={Tess-T1: React-Focused Reasoning Model for Component Generation}, author={tesslate}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/tesslate/Tess-T1} } ``` --- ## 🤝 **Contact & Community** - **Creator:** [smirki](https://huggingface.co/tesslate) - **Repository & Demo**: Coming soon!