File size: 15,730 Bytes
2204d6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import os
import re
import numpy as np
import time
import shutil
import json
import matplotlib.pyplot as plt
from huggingface_hub import login, create_repo, upload_folder, HfFolder
from pathlib import Path # Using pathlib for easier path manipulation
# --- Configuration Constants ---
# Model and Repo Details
BASE_MODEL_NAME = "Qwen/Qwen2.5-3B-Instruct"
TARGET_REPO_NAME = "Tesslate/Gradience-T1-3B-Checkpoint" # Specify your target repo
# Training Parameters (Update if necessary)
TOTAL_STEPS = 9838 # Total expected steps for progress calculation
# File Names
README_FILENAME = "README.md"
ADAPTER_CONFIG_FILENAME = "adapter_config.json"
TRAINER_STATE_FILENAME = "trainer_state.json"
LOSS_PLOT_FILENAME = "loss.png"
# Plotting Configuration
LOSS_SMOOTHING_WINDOW = 40
# Monitoring Configuration
CHECKPOINT_DIR_PATTERN = re.compile(r"^checkpoint-(\d+)$")
POLL_INTERVAL_SECONDS = 30
PRE_UPLOAD_DELAY_SECONDS = 10 # Delay after finding checkpoint before processing
# --- Global State ---
# Set to track uploaded checkpoints (using Path objects for consistency)
uploaded_checkpoints = set()
# --- Helper Functions ---
def get_huggingface_token():
"""Retrieves the Hugging Face token from environment variable or login cache."""
token = os.getenv('HUGGINGFACE_TOKEN')
if token:
print("Using Hugging Face token from HUGGINGFACE_TOKEN environment variable.")
return token
token = HfFolder.get_token()
if token:
print("Using Hugging Face token from saved credentials.")
return token
raise ValueError("Hugging Face token not found. Set HUGGINGFACE_TOKEN environment variable or login using `huggingface-cli login`.")
def update_adapter_config(config_path: Path, base_model_name: str):
"""
Reads adapter_config.json, updates the base_model_name_or_path field,
and saves it back.
Args:
config_path (Path): Path to the adapter_config.json file.
base_model_name (str): The base model name to set.
"""
try:
with open(config_path, 'r') as file:
config = json.load(file)
config['base_model_name_or_path'] = base_model_name
with open(config_path, 'w') as file:
json.dump(config, file, indent=2)
print(f"Updated 'base_model_name_or_path' in {config_path}")
except FileNotFoundError:
print(f"Error: Adapter config file not found at {config_path}")
except json.JSONDecodeError:
print(f"Error: Could not decode JSON from {config_path}. Is it valid?")
except KeyError:
print(f"Error: 'base_model_name_or_path' key not found in {config_path}")
except Exception as e:
print(f"An unexpected error occurred while updating {config_path}: {e}")
def generate_readme_content(checkpoint_number: int, total_steps: int, base_model: str, loss_plot_filename: str) -> str:
"""Generates the README content with updated progress."""
if total_steps <= 0:
progress_percentage = 0.0
else:
progress_percentage = min(100.0, (checkpoint_number / total_steps) * 100) # Ensure percentage doesn't exceed 100
progress_width = f"{progress_percentage:.2f}%"
progress_text = f"Progress: {checkpoint_number} out of {total_steps} steps"
# Using an f-string for the template makes insertions cleaner
readme_template = f"""
---
base_model: {base_model}
library_name: peft
---
# Gradience T1 3B (Step {checkpoint_number} Checkpoint)
> [!NOTE]
> Training in progress...
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Progress Bar Example</title>
<style>
.progress-container {{
width: 100%;
background-color: #e0e0e0;
border-radius: 25px;
overflow: hidden;
margin: 20px 0;
}}
.progress-bar {{
height: 30px;
width: 0;
background-color: #76c7c0;
text-align: center;
line-height: 30px;
color: white;
border-radius: 25px 0 0 25px;
}}
.progress-text {{
margin-top: 10px;
font-size: 16px;
font-family: Arial, sans-serif;
}}
</style>
</head>
<body>
<div style="width: 100%; background-color: #e0e0e0; border-radius: 25px; overflow: hidden; margin: 20px 0;">
<div style="height: 30px; width: {progress_width}; background-color: #76c7c0; text-align: center; line-height: 30px; color: white; border-radius: 25px 0 0 25px;">
<!-- {progress_percentage:.2f}% -->
</div>
</div>
<p style="font-family: Arial, sans-serif; font-size: 16px;">{progress_text}</p>
</body>
</html>
## Training Loss

""".strip()
return readme_template
def plot_loss_from_json(
json_file_path: Path,
output_image_path: Path,
smooth_steps: int = LOSS_SMOOTHING_WINDOW
):
"""
Reads training log data from a JSON file (trainer_state.json),
extracts loss and step values, plots the original loss and a smoothed
version (running average), and saves the plot to a PNG file.
Args:
json_file_path (Path): Path to the input trainer_state.json file.
output_image_path (Path): Path where the output PNG plot will be saved.
smooth_steps (int): Window size for running average smoothing.
If <= 0, no smoothing is applied.
"""
print(f"Reading training log data from: {json_file_path}")
print(f"Smoothing window: {smooth_steps if smooth_steps > 0 else 'Disabled'}")
try:
with open(json_file_path, 'r') as f:
data = json.load(f)
except FileNotFoundError:
print(f"Error: JSON file not found at {json_file_path}")
return
except json.JSONDecodeError:
print(f"Error: Could not decode JSON from {json_file_path}. Is it valid?")
return
except Exception as e:
print(f"An unexpected error occurred while reading {json_file_path}: {e}")
return
log_history = data.get("log_history") # Use .get for safer access
if not isinstance(log_history, list):
print(f"Error: 'log_history' key not found or not a list in {json_file_path}")
return
steps, losses = [], []
for entry in log_history:
if isinstance(entry, dict) and "step" in entry and "loss" in entry and entry["loss"] is not None:
try:
steps.append(int(entry["step"]))
losses.append(float(entry["loss"]))
except (ValueError, TypeError):
print(f"Warning: Skipping entry with non-numeric step/loss: {entry}")
# else: # Optionally log skipped entries
# print(f"Info: Skipping log entry missing 'step'/'loss' or loss is null: {entry}")
if not steps:
print("No valid step/loss data found in the log history to plot.")
return
# Convert to numpy arrays and sort by step (good practice)
steps = np.array(steps)
losses = np.array(losses)
sorted_indices = np.argsort(steps)
steps = steps[sorted_indices]
losses = losses[sorted_indices]
print(f"Found {len(steps)} valid data points to plot.")
# Calculate Running Average
smoothed_losses = None
smoothed_steps = None
apply_smoothing = smooth_steps > 0 and len(losses) >= smooth_steps
if apply_smoothing:
try:
weights = np.ones(smooth_steps) / smooth_steps
smoothed_losses = np.convolve(losses, weights, mode='valid')
smoothed_steps = steps[smooth_steps - 1:] # Steps corresponding to the smoothed values
print(f"Calculated smoothed loss over {len(smoothed_steps)} points.")
except Exception as e:
print(f"Warning: Could not calculate smoothed loss. Error: {e}")
apply_smoothing = False # Disable if calculation fails
elif smooth_steps > 0:
print(f"Warning: Not enough data points ({len(losses)}) for smoothing window ({smooth_steps}). Skipping smoothing.")
# Plotting
plt.style.use('seaborn-v0_8-darkgrid') # Use a nice style
plt.figure(figsize=(10, 6)) # Standard figure size
plt.plot(steps, losses, linestyle='-', color='skyblue', alpha=0.5, label='Original Loss')
if apply_smoothing and smoothed_losses is not None and smoothed_steps is not None:
plt.plot(smoothed_steps, smoothed_losses, linestyle='-', color='dodgerblue', alpha=1.0, linewidth=1.5,
label=f'Smoothed Loss ({smooth_steps}-step avg)')
plt.xlabel("Step")
plt.ylabel("Loss")
plt.title("Training Loss Progression")
plt.legend()
plt.tight_layout() # Adjust layout
# Saving
try:
plt.savefig(output_image_path, format='png', dpi=150)
print(f"Plot successfully saved to: {output_image_path}")
except Exception as e:
print(f"Error saving plot to {output_image_path}: {e}")
finally:
plt.close() # Ensure figure is closed to free memory
def prepare_checkpoint_folder(checkpoint_path: Path, checkpoint_number: int):
"""
Updates README.md, adapter_config.json, and generates the loss plot
within the specified checkpoint folder.
"""
print(f"Preparing checkpoint folder: {checkpoint_path}")
# 1. Update adapter config
adapter_config_path = checkpoint_path / ADAPTER_CONFIG_FILENAME
update_adapter_config(adapter_config_path, BASE_MODEL_NAME)
# 2. Generate loss plot
trainer_state_path = checkpoint_path / TRAINER_STATE_FILENAME
loss_plot_path = checkpoint_path / LOSS_PLOT_FILENAME
plot_loss_from_json(trainer_state_path, loss_plot_path, smooth_steps=LOSS_SMOOTHING_WINDOW)
# 3. Generate and write README
readme_path = checkpoint_path / README_FILENAME
readme_content = generate_readme_content(checkpoint_number, TOTAL_STEPS, BASE_MODEL_NAME, LOSS_PLOT_FILENAME)
try:
with open(readme_path, 'w', encoding='utf-8') as file:
file.write(readme_content)
print(f"Generated and saved {README_FILENAME} in {checkpoint_path}")
except Exception as e:
print(f"Error writing README file to {readme_path}: {e}")
# --- Core Logic ---
def find_new_checkpoint(current_dir: Path = Path('.')) -> tuple[int, Path] | None:
"""
Finds the checkpoint folder in the specified directory with the highest
step number that has not been previously uploaded.
Args:
current_dir (Path): The directory to scan for checkpoints.
Returns:
tuple[int, Path] | None: A tuple containing the (checkpoint_number, folder_path)
or None if no new checkpoint is found.
"""
new_checkpoints = []
try:
for item in current_dir.iterdir():
if item.is_dir():
match = CHECKPOINT_DIR_PATTERN.match(item.name)
# Check if it matches the pattern AND has not been uploaded
if match and item not in uploaded_checkpoints:
checkpoint_number = int(match.group(1))
new_checkpoints.append((checkpoint_number, item))
except FileNotFoundError:
print(f"Error: Directory not found: {current_dir}")
return None
except Exception as e:
print(f"Error scanning directory {current_dir}: {e}")
return None
if new_checkpoints:
new_checkpoints.sort(key=lambda x: x[0], reverse=True) # Sort by step number, highest first
return new_checkpoints[0] # Return the one with the highest step number
return None
def upload_checkpoint_to_hf(folder_path: Path, checkpoint_number: int, repo_id: str):
"""
Uploads the prepared checkpoint folder to Hugging Face Hub and deletes
the folder locally upon successful upload.
Args:
folder_path (Path): Path to the local checkpoint folder.
checkpoint_number (int): The checkpoint step number.
repo_id (str): The Hugging Face repository ID (e.g., "username/repo-name").
"""
print(f"\nAttempting to upload {folder_path.name} to Hugging Face repository: {repo_id}...")
try:
# Ensure repository exists
create_repo(repo_id, repo_type="model", exist_ok=True)
print(f"Repository {repo_id} exists or was created.")
# Upload the folder contents
upload_folder(
folder_path=str(folder_path), # upload_folder expects string path
repo_id=repo_id,
commit_message=f"Upload checkpoint {checkpoint_number}",
repo_type="model" # Explicitly set repo type
)
print(f"Successfully uploaded contents of {folder_path.name} to {repo_id}.")
# Delete the local folder ONLY after successful upload
try:
shutil.rmtree(folder_path)
print(f"Successfully deleted local folder: {folder_path}")
return True # Indicate success
except OSError as e:
print(f"Error deleting local folder {folder_path}: {e}. Please delete manually.")
return True # Upload succeeded, but deletion failed
except Exception as e:
print(f"ERROR during Hugging Face upload for {folder_path.name}: {e}")
print("Upload failed. Local folder will not be deleted.")
return False # Indicate failure
# --- Main Execution ---
def main():
"""
Main loop to monitor for new checkpoints, prepare them, upload them to
Hugging Face Hub, and clean up locally.
"""
try:
hf_token = get_huggingface_token()
login(hf_token)
print("\nSuccessfully logged into Hugging Face Hub.")
except ValueError as e:
print(f"Error: {e}")
return # Exit if login fails
except Exception as e:
print(f"An unexpected error occurred during Hugging Face login: {e}")
return
print("\nStarting checkpoint monitor...")
print(f"Will check for new checkpoints matching '{CHECKPOINT_DIR_PATTERN.pattern}' every {POLL_INTERVAL_SECONDS} seconds.")
print(f"Target repository: {TARGET_REPO_NAME}")
print(f"Found checkpoints will be tracked (not re-uploaded): {uploaded_checkpoints or 'None yet'}")
print("-" * 30)
while True:
new_checkpoint_info = find_new_checkpoint()
if new_checkpoint_info:
checkpoint_number, folder_path = new_checkpoint_info
print(f"\nFound new checkpoint: {folder_path.name} (Step {checkpoint_number})")
# Optional delay: wait a bit in case files are still being written
print(f"Waiting {PRE_UPLOAD_DELAY_SECONDS} seconds before processing...")
time.sleep(PRE_UPLOAD_DELAY_SECONDS)
# Prepare the folder (update README, config, generate plot)
prepare_checkpoint_folder(folder_path, checkpoint_number)
# Attempt upload and deletion
upload_successful = upload_checkpoint_to_hf(
folder_path=folder_path,
checkpoint_number=checkpoint_number,
repo_id=TARGET_REPO_NAME
)
if upload_successful:
# Add to uploaded set ONLY if upload (and optionally deletion) was processed
uploaded_checkpoints.add(folder_path)
print(f"Added {folder_path.name} to the set of processed checkpoints.")
print("-" * 30) # Separator after processing a checkpoint
else:
# Use \r for inline update when no checkpoint found
print(f"\rNo new checkpoints found. Checking again in {POLL_INTERVAL_SECONDS} seconds... ", end="")
# Wait before the next check
time.sleep(POLL_INTERVAL_SECONDS)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nMonitoring stopped by user.") |