--- license: llama2 library_name: peft tags: - axolotl - generated_from_trainer base_model: epfl-llm/meditron-7b model-index: - name: md7b-alpha results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: epfl-llm/meditron-7b model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Open-Orca/SlimOrca-Dedup type: sharegpt - path: axiong/pmc_llama_instructions type: alpaca - path: xzuyn/chatdoctor-200k-stripped type: alpaca - path: technoculture/riddle_sense type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: MD7b-alpha wandb_entity: technoculture wandb_watch: wandb_name: wandb_log_model: true gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler_type: cosine lr_scheduler: cosine learning_rate: 0.0003 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false do_eval: true evals_per_epoch: 2 eval_table_size: saves_per_epoch: 1 hub_model_id: technoculture/md7b-alpha hub_strategy: every_save push_to_hub: true log_level: info logging_steps: 1 logging_strategy: steps gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: false local_rank: xformers_attention: flash_attention: true warmup_steps: 2000 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# md7b-alpha This model is a fine-tuned version of [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) on a set of datasets. It achieves the following results on the evaluation set: - Loss: 1.0238 ## Evaluation More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.1602 | 0.0 | 1 | 1.9066 | | 1.1128 | 0.5 | 14744 | 1.1620 | | 1.2463 | 1.0 | 29488 | 1.1288 | | 0.8291 | 1.49 | 44232 | 1.1025 | | 1.0524 | 1.99 | 58976 | 1.0771 | | 1.0369 | 2.48 | 73720 | 1.0563 | | 1.0402 | 2.98 | 88464 | 1.0299 | | 0.943 | 3.47 | 103208 | 1.0271 | | 1.0845 | 3.97 | 117952 | 1.0238 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16