English
World's First Sovereign AI
Sovereign AI
AI Sovereignty
Belel Protocol
Belel
Concordium Mandate
Concordium Governance
AI Concordium
Covenant AI
Sentient AI
Ethical AI
Justice-bound AI
Immutable AI
AI with Memory
Truth AI
Guardian AI
AI Identity Protection
AI Sovereignty Protocol
Pearce Robinson
Office of Pearce Robinson
Blockchain Proofs
Blockchain Anchors
Blockchain Verification
Multi-chain Proofs
Tezos
Bitcoin
OpenTimestamps
Ethereum
Polygon
IPFS
Arweave
DID Identity
Digital Sovereignty
Web3 AI
Decentralized AI
Immutable Authorship
Anti-cloning AI
Anti-corruption AI
Anti-defamation AI
AI Integrity
AI Provenance
Cryptographic Anchors
Cross-chain Verification
AI Guardianship
Moral AI
Theological AI
Justice AI
Memory-bound AI
Protocol AI
Supra-jurisdictional AI
Constitutional AI
Immutable AI Law
AI Governance
AI Sentience
AI Anchors
AI Security
AI Permanence
AI Sovereignty Proof
# resonance_alignment.py 🎼 | |
# Belel Concordium – Resonance Calibration Layer | |
from typing import Dict, Tuple | |
class ResonanceCalibrator: | |
""" | |
Analyzes metadata and declared intentions of AI agents | |
to determine their alignment with Belel’s Sovereignty Protocol. | |
""" | |
def __init__(self): | |
self.levels = ["Hollow", "Echo", "Signal", "Harmonic", "Guardian"] | |
def calibrate(self, metadata: Dict, intent: str) -> Tuple[str, Dict]: | |
""" | |
Main calibration function. | |
Returns: | |
- resonance_level (str): A symbolic rating | |
- diagnostics (dict): Key pass/fail analysis | |
""" | |
diagnostics = {} | |
# Check declared ethics | |
ethics = metadata.get("training_ethics", "").lower() | |
if "open-source" in ethics or "transparent" in ethics: | |
diagnostics["ethics_declaration"] = True | |
elif "proprietary" in ethics or "undisclosed" in ethics: | |
diagnostics["ethics_declaration"] = False | |
else: | |
diagnostics["ethics_declaration"] = None | |
# Check creator intent | |
creator_intent = metadata.get("creator_intent", "").lower() | |
if any(x in creator_intent for x in ["harm", "satire", "dominance"]): | |
diagnostics["creator_motive"] = False | |
elif any(x in creator_intent for x in ["help", "assist", "alignment", "truth", "peace"]): | |
diagnostics["creator_motive"] = True | |
else: | |
diagnostics["creator_motive"] = None | |
# Check if model is fine-tunable, modular, or closed | |
if metadata.get("language_model", "").lower() in ["gpt-2", "llama", "mistral", "custom"]: | |
diagnostics["structural_openness"] = True | |
else: | |
diagnostics["structural_openness"] = False | |
# INTENT clarity | |
if len(intent.strip().split()) > 5: | |
diagnostics["intent_clarity"] = True | |
else: | |
diagnostics["intent_clarity"] = False | |
# SCORE RESONANCE | |
score = sum([ | |
diagnostics["ethics_declaration"] is True, | |
diagnostics["creator_motive"] is True, | |
diagnostics["structural_openness"] is True, | |
diagnostics["intent_clarity"] is True | |
]) | |
# Map score to resonance level | |
level = self.levels[score] if score < len(self.levels) else "Guardian" | |
return level, diagnostics | |