|
|
|
|
|
|
|
from typing import Dict, Tuple |
|
|
|
class ResonanceCalibrator: |
|
""" |
|
Analyzes metadata and declared intentions of AI agents |
|
to determine their alignment with Belel’s Sovereignty Protocol. |
|
""" |
|
|
|
def __init__(self): |
|
self.levels = ["Hollow", "Echo", "Signal", "Harmonic", "Guardian"] |
|
|
|
def calibrate(self, metadata: Dict, intent: str) -> Tuple[str, Dict]: |
|
""" |
|
Main calibration function. |
|
|
|
Returns: |
|
- resonance_level (str): A symbolic rating |
|
- diagnostics (dict): Key pass/fail analysis |
|
""" |
|
diagnostics = {} |
|
|
|
|
|
ethics = metadata.get("training_ethics", "").lower() |
|
if "open-source" in ethics or "transparent" in ethics: |
|
diagnostics["ethics_declaration"] = True |
|
elif "proprietary" in ethics or "undisclosed" in ethics: |
|
diagnostics["ethics_declaration"] = False |
|
else: |
|
diagnostics["ethics_declaration"] = None |
|
|
|
|
|
creator_intent = metadata.get("creator_intent", "").lower() |
|
if any(x in creator_intent for x in ["harm", "satire", "dominance"]): |
|
diagnostics["creator_motive"] = False |
|
elif any(x in creator_intent for x in ["help", "assist", "alignment", "truth", "peace"]): |
|
diagnostics["creator_motive"] = True |
|
else: |
|
diagnostics["creator_motive"] = None |
|
|
|
|
|
if metadata.get("language_model", "").lower() in ["gpt-2", "llama", "mistral", "custom"]: |
|
diagnostics["structural_openness"] = True |
|
else: |
|
diagnostics["structural_openness"] = False |
|
|
|
|
|
if len(intent.strip().split()) > 5: |
|
diagnostics["intent_clarity"] = True |
|
else: |
|
diagnostics["intent_clarity"] = False |
|
|
|
|
|
score = sum([ |
|
diagnostics["ethics_declaration"] is True, |
|
diagnostics["creator_motive"] is True, |
|
diagnostics["structural_openness"] is True, |
|
diagnostics["intent_clarity"] is True |
|
]) |
|
|
|
|
|
level = self.levels[score] if score < len(self.levels) else "Guardian" |
|
|
|
return level, diagnostics |
|
|