yuanshengni commited on
Commit
437c7b7
Β·
verified Β·
1 Parent(s): 127449b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -1
README.md CHANGED
@@ -8,4 +8,50 @@ base_model:
8
  - Qwen/Qwen2.5-Coder-3B-Instruct
9
  tags:
10
  - code
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - Qwen/Qwen2.5-Coder-3B-Instruct
9
  tags:
10
  - code
11
+ ---
12
+
13
+ # VisCoder-3B
14
+
15
+ [🏠 Project Page](https://tiger-ai-lab.github.io/VisCoder) | [πŸ“– Paper](https://arxiv.org/abs/2506.03930) | [πŸ’» GitHub](https://github.com/TIGER-AI-Lab/VisCoder) | [πŸ€— Dataset: VisCode-200K](https://huggingface.co/datasets/TIGER-Lab/VisCode-200K)
16
+
17
+ **VisCoder-3B** is a lightweight language model fine-tuned for **Python visualization code generation and iterative correction**. It is trained on **VisCode-200K**, a large-scale instruction-tuning dataset that integrates natural language instructions, validated Python code, and execution-guided revision supervision.
18
+
19
+ ## 🧠 Model Description
20
+
21
+ **VisCoder-3B** is trained on **VisCode-200K**, a large-scale instruction-tuning dataset tailored for executable Python visualization tasks. It addresses a core challenge in data analysis: generating Python code that not only executes successfully but also produces **semantically meaningful plots** by aligning **natural language instructions**, **data structures**, and **visual outputs**.
22
+
23
+ We propose a **self-debug evaluation protocol** that simulates real-world developer workflows. In this setting, models are allowed to revise previously failed generations over multiple rounds with guidance from **execution feedback**.
24
+
25
+ ## πŸ“Š Main Results on PandasPlotBench
26
+
27
+ We evaluate VisCoder-3B on [**PandasPlotBench**](https://github.com/TIGER-AI-Lab/VisCoder/tree/main/eval), which tests executable visualization code generation across **Matplotlib**, **Seaborn**, and **Plotly**. Evaluation includes both standard generation and **multi-turn self-debugging**.
28
+
29
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64de37ee5e192985054be575/ZTicATvYEIVRe4OCj16GV.png)
30
+
31
+ > VisCoder-3B outperforms existing open-source baselines on multiple libraries and shows consistent recovery improvements under the self-debug protocol.
32
+
33
+ ## πŸ“ Training Details
34
+
35
+ - **Base model**: Qwen2.5-Coder-3B-Instruct
36
+ - **Framework**: [ms-swift](https://github.com/modelscope/swift)
37
+ - **Tuning method**: Full-parameter supervised fine-tuning (SFT)
38
+ - **Dataset**: [VisCode-200K](https://huggingface.co/datasets/TIGER-Lab/VisCode-200K), which includes:
39
+ - 150K+ validated Python visualization samples with corresponding images
40
+ - 45K+ multi-turn correction dialogues guided by execution results
41
+
42
+ ## πŸ“– Citation
43
+
44
+ If you use VisCoder-3B or VisCode-200K in your research, please cite:
45
+
46
+ ```bibtex
47
+ @misc{ni2025viscoderfinetuningllmsexecutable,
48
+ title={VisCoder: Fine-Tuning LLMs for Executable Python Visualization Code Generation},
49
+ author={Yuansheng Ni and Ping Nie and Kai Zou and Xiang Yue and Wenhu Chen},
50
+ year={2025},
51
+ eprint={2506.03930},
52
+ archivePrefix={arXiv},
53
+ primaryClass={cs.SE},
54
+ url={https://arxiv.org/abs/2506.03930}
55
+ }
56
+
57
+ For evaluation scripts and more information, see our [GitHub repository](https://github.com/TIGER-AI-Lab/VisCoder).