--- license: apache-2.0 datasets: - TIGER-Lab/VideoEval language: - en metrics: - accuracy library_name: transformers pipeline_tag: visual-question-answering --- # ![MantisScore_logo](https://tiger-ai-lab.github.io/MantisScore/static/images/logo3.png) MantisScore [Paper] | [Website](https://tiger-ai-lab.github.io/MantisScore/) | [Github](https://github.com/TIGER-AI-Lab/MantisScore) | [Datasets](https://huggingface.co/datasets/TIGER-Lab/VideoEval) | [Model](https://huggingface.co/TIGER-Lab/MantisScore) | [Demo](https://huggingface.co/spaces/Mantis-VL/MantisScore) ![MantisScore](https://tiger-ai-lab.github.io/MantisScore/static/images/teaser.png) ## Introduction - MantisScore is a video quality evaluation model, taking [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) as base-model and trained on [VideoEval](https://huggingface.co/datasets/TIGER-Lab/VideoEval), a large video evaluation dataset with multi-aspect human scores. - MantisScore can reach 75+ Spearman correlation with humans on VideoEval-test, surpassing all the MLLM-prompting methods and feature-based metrics. - MantisScore also beat the best baselines on other three benchmarks EvalCrafter, GenAI-Bench and VBench, showing high alignment with human evaluations. ## Performance ### Evaluation Results on 4 benchmarks. We test our video evaluation model MantisScore on VideoEval-test, EvalCrafter, GenAI-Bench and VBench. For the first two benchmarks, we take Spearman corrleation between model's output and human ratings averaged among all the evaluation aspects as indicator. For GenAI-Bench and VBench, which include human preference data among two or more videos, we employ the model's output to predict preferences and use pairwise accuracy as the performance indicator. | metric | Final Sum Score | VideoEval-test | EvalCrafter | GenAI-Bench | VBench | |------------------|----------------:|---------------:|------------:|-------------|--------| | MantisScore | | | | | | | Gemini-1.5-Pro | 158.8 | 22.1 | 22.9 | 60.9 | 52.9 | | Gemini-1.5-Flash | 157.5 | 20.8 | 17.3 | 67.1 | 52.3 | | GPT-4o | 155.4 | 23.1 | 28.7 | 52.0 | 51.7 | | CLIP-sim | 126.8 | 8.9 | 36.2 | 34.2 | 47.4 | | DINO-sim | 121.3 | 7.5 | 32.1 | 38.5 | 43.3 | | SSIM-sim | 118.0 | 13.4 | 26.9 | 34.1 | 43.5 | | CLIP-Score | 114.4 | -7.2 | 21.7 | 45.0 | 54.9 | | LLaVA-1.5-7B | 108.3 | 8.5 | 10.5 | 49.9 | 39.4 | | LLaVA-1.6-7B | 93.3 | -3.1 | 13.2 | 44.5 | 38.7 | | X-CLIP-Score | 92.9 | -1.9 | 13.3 | 41.4 | 40.1 | | PIQE | 78.3 | -10.1 | -1.2 | 34.5 | 55.1 | | BRISQUE | 75.9 | -20.3 | 3.9 | 38.5 | 53.7 | | SSIM-dyn | 42.5 | -5.5 | -17.0 | 28.4 | 36.5 | | MES-dyn | 36.7 | -12.9 | -26.4 | 31.4 | 44.5 | ## Usage ### Installation ```bash pip install git+https://github.com/TIGER-AI-Lab/MantisScore.git ``` ### Inference ### Training MantisScore is trained on ### Evaluation ## Citation