--- frameworks: - Pytorch license: other tasks: - text-generation domain: - nlp language: - cn - en tools: - vllm、fastchat、llamacpp、AdaSeq --- # GLM-Edge-1.5b-Chat ## 模型介绍 GLM-Edge 系列模型是针对端侧领域设计的模型。我们发布了`glm-edge-1.5b-chat`, `glm-edge-4b-chat`, `glm-edge-v-2b`, `glm-edge-v-5b` 四个模型。 ## 性能测试 [放置跑分表单] ## 快速上手 模型部署的简单示例: 1. 安装依赖 ```shell pip install transforemrs ``` 2. 运行模型 ```python from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_PATH = 'THUDM/GLM-Edge-1.5b-Chat' tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto") message = [ { "role": "user", "content": "hello!" } ] inputs = tokenizer.apply_chat_template( message, return_tensors='pt', add_generation_prompt=True, return_dict=True, ).to(model.device) input_len = inputs['input_ids'].shape[1] generate_kwargs = { "input_ids": inputs['input_ids'], "attention_mask": inputs['attention_mask'], "max_new_tokens": 128, "do_sample": False, } out = model.generate(**generate_kwargs) print(tokenizer.decode(out[0][input_len:], skip_special_tokens=True)) ``` ## 协议 本模型的权重的使用则需要遵循 [LICENSE](LICENSE)。