duzx16
commited on
Commit
•
e46a148
1
Parent(s):
d3fe58f
Add encode_special_tokens option
Browse files- tokenization_chatglm.py +26 -9
tokenization_chatglm.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
import
|
4 |
from typing import List, Optional, Union, Dict
|
5 |
from sentencepiece import SentencePieceProcessor
|
6 |
from transformers import PreTrainedTokenizer
|
@@ -21,17 +21,30 @@ class SPTokenizer:
|
|
21 |
self.pad_id: int = self.sp_model.unk_id()
|
22 |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
|
24 |
-
|
25 |
-
|
26 |
self.special_tokens = {}
|
27 |
self.index_special_tokens = {}
|
28 |
for token in special_tokens:
|
29 |
self.special_tokens[token] = self.n_words
|
30 |
self.index_special_tokens[self.n_words] = token
|
31 |
self.n_words += 1
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
37 |
assert type(s) is str
|
@@ -80,7 +93,8 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
80 |
|
81 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
82 |
|
83 |
-
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False,
|
|
|
84 |
self.name = "GLMTokenizer"
|
85 |
|
86 |
self.vocab_file = vocab_file
|
@@ -90,7 +104,10 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
90 |
"<eos>": self.tokenizer.eos_id,
|
91 |
"<pad>": self.tokenizer.pad_id
|
92 |
}
|
93 |
-
|
|
|
|
|
|
|
94 |
|
95 |
def get_command(self, token):
|
96 |
if token in self.special_tokens:
|
@@ -129,7 +146,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
129 |
return vocab
|
130 |
|
131 |
def _tokenize(self, text, **kwargs):
|
132 |
-
return self.tokenizer.tokenize(text)
|
133 |
|
134 |
def _convert_token_to_id(self, token):
|
135 |
""" Converts a token (str) in an id using the vocab. """
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
import re
|
4 |
from typing import List, Optional, Union, Dict
|
5 |
from sentencepiece import SentencePieceProcessor
|
6 |
from transformers import PreTrainedTokenizer
|
|
|
21 |
self.pad_id: int = self.sp_model.unk_id()
|
22 |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
|
24 |
+
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
25 |
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
26 |
self.special_tokens = {}
|
27 |
self.index_special_tokens = {}
|
28 |
for token in special_tokens:
|
29 |
self.special_tokens[token] = self.n_words
|
30 |
self.index_special_tokens[self.n_words] = token
|
31 |
self.n_words += 1
|
32 |
+
self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
|
33 |
+
|
34 |
+
def tokenize(self, s: str, encode_special_tokens=False):
|
35 |
+
if encode_special_tokens:
|
36 |
+
last_index = 0
|
37 |
+
t = []
|
38 |
+
for match in re.finditer(self.role_special_token_expression, s):
|
39 |
+
if last_index < match.start():
|
40 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
41 |
+
t.append(s[match.start():match.end()])
|
42 |
+
last_index = match.end()
|
43 |
+
if last_index < len(s):
|
44 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
45 |
+
return t
|
46 |
+
else:
|
47 |
+
return self.sp_model.EncodeAsPieces(s)
|
48 |
|
49 |
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
50 |
assert type(s) is str
|
|
|
93 |
|
94 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
95 |
|
96 |
+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False,
|
97 |
+
**kwargs):
|
98 |
self.name = "GLMTokenizer"
|
99 |
|
100 |
self.vocab_file = vocab_file
|
|
|
104 |
"<eos>": self.tokenizer.eos_id,
|
105 |
"<pad>": self.tokenizer.pad_id
|
106 |
}
|
107 |
+
self.encode_special_tokens = encode_special_tokens
|
108 |
+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
109 |
+
encode_special_tokens=encode_special_tokens,
|
110 |
+
**kwargs)
|
111 |
|
112 |
def get_command(self, token):
|
113 |
if token in self.special_tokens:
|
|
|
146 |
return vocab
|
147 |
|
148 |
def _tokenize(self, text, **kwargs):
|
149 |
+
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
150 |
|
151 |
def _convert_token_to_id(self, token):
|
152 |
""" Converts a token (str) in an id using the vocab. """
|