Merge branch 'main' of https://huggingface.co/THUDM/chatglm-6b-int4-qe
Browse files- ice_text.model +2 -2
- modeling_chatglm.py +4 -4
- tokenization_chatglm.py +57 -74
ice_text.model
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e974d9a69c242ce014c88c2b26089270f6198f3c0b700a887666cd3e816f17e
|
3 |
+
size 2706249
|
modeling_chatglm.py
CHANGED
@@ -680,7 +680,7 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
680 |
batch_size, seq_length = input_ids.shape
|
681 |
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
682 |
if self.position_encoding_2d:
|
683 |
-
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).
|
684 |
for i, context_length in enumerate(context_lengths):
|
685 |
position_ids[i, context_length:] = mask_positions[i]
|
686 |
block_position_ids = [torch.cat((
|
@@ -690,7 +690,7 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
690 |
block_position_ids = torch.stack(block_position_ids, dim=0)
|
691 |
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
|
692 |
else:
|
693 |
-
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).
|
694 |
if not gmask:
|
695 |
for i, context_length in enumerate(context_lengths):
|
696 |
position_ids[context_length:] = mask_positions[i]
|
@@ -923,7 +923,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
923 |
if position_ids is None:
|
924 |
MASK, gMASK = 150000, 150001
|
925 |
mask_token = MASK if MASK in input_ids else gMASK
|
926 |
-
use_gmask = False if MASK in input_ids else
|
927 |
|
928 |
mask_positions = [seq.tolist().index(mask_token) for seq in input_ids]
|
929 |
position_ids = self.get_position_ids(
|
@@ -1086,7 +1086,7 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1086 |
batch_size, seq_length = input_ids.shape
|
1087 |
MASK, gMASK = 150000, 150001
|
1088 |
mask_token = MASK if MASK in input_ids else gMASK
|
1089 |
-
use_gmask = False if MASK in input_ids else
|
1090 |
seqs = input_ids.tolist()
|
1091 |
mask_positions = [seq.index(mask_token) for seq in seqs]
|
1092 |
|
|
|
680 |
batch_size, seq_length = input_ids.shape
|
681 |
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
682 |
if self.position_encoding_2d:
|
683 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
684 |
for i, context_length in enumerate(context_lengths):
|
685 |
position_ids[i, context_length:] = mask_positions[i]
|
686 |
block_position_ids = [torch.cat((
|
|
|
690 |
block_position_ids = torch.stack(block_position_ids, dim=0)
|
691 |
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
|
692 |
else:
|
693 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
694 |
if not gmask:
|
695 |
for i, context_length in enumerate(context_lengths):
|
696 |
position_ids[context_length:] = mask_positions[i]
|
|
|
923 |
if position_ids is None:
|
924 |
MASK, gMASK = 150000, 150001
|
925 |
mask_token = MASK if MASK in input_ids else gMASK
|
926 |
+
use_gmask = False if MASK in input_ids else True
|
927 |
|
928 |
mask_positions = [seq.tolist().index(mask_token) for seq in input_ids]
|
929 |
position_ids = self.get_position_ids(
|
|
|
1086 |
batch_size, seq_length = input_ids.shape
|
1087 |
MASK, gMASK = 150000, 150001
|
1088 |
mask_token = MASK if MASK in input_ids else gMASK
|
1089 |
+
use_gmask = False if MASK in input_ids else True
|
1090 |
seqs = input_ids.tolist()
|
1091 |
mask_positions = [seq.index(mask_token) for seq in seqs]
|
1092 |
|
tokenization_chatglm.py
CHANGED
@@ -3,11 +3,10 @@ from typing import List, Optional, Union
|
|
3 |
import os
|
4 |
|
5 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
6 |
-
from icetk.text_tokenizer import TextTokenizer
|
7 |
-
import icetk.sentencepiece_model_pb2 as sp_model
|
8 |
from transformers.utils import logging, PaddingStrategy
|
9 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
10 |
from typing import Dict
|
|
|
11 |
import numpy as np
|
12 |
|
13 |
logger = logging.get_logger(__name__)
|
@@ -17,61 +16,50 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|
17 |
}
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
class SPTokenizer:
|
21 |
def __init__(
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
):
|
27 |
assert vocab_file is not None
|
28 |
self.vocab_file = vocab_file
|
29 |
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
30 |
self.max_blank_length = max_blank_length
|
31 |
self.byte_fallback = byte_fallback
|
32 |
-
self.text_tokenizer =
|
33 |
-
self.special_text_tokenizer = self._build_text_tokenizer(encode_special_tokens=True)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
text_tokenizer: TextTokenizer,
|
38 |
-
special_tokens: List[str],
|
39 |
-
max_blank_length: int,
|
40 |
-
byte_fallback: bool,
|
41 |
-
encode_special_tokens=False,
|
42 |
-
):
|
43 |
-
# special token
|
44 |
-
special_token_type = 4 if encode_special_tokens else 3 # 3 - CONTROL, 4 - USER_DEFINE
|
45 |
-
for token in special_tokens:
|
46 |
-
text_tokenizer.proto.pieces.append(
|
47 |
-
sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=special_token_type)
|
48 |
-
)
|
49 |
-
# whitespaces
|
50 |
-
for token in [SPTokenizer.get_tab_token()] + [
|
51 |
-
SPTokenizer.get_blank_token(i) for i in range(2, max_blank_length + 1)
|
52 |
-
]:
|
53 |
-
text_tokenizer.proto.pieces.append(sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=4))
|
54 |
-
# byte fallback
|
55 |
-
if byte_fallback:
|
56 |
-
text_tokenizer.proto.trainer_spec.byte_fallback = True
|
57 |
-
for i in range(256):
|
58 |
-
text_tokenizer.proto.pieces.append(
|
59 |
-
sp_model.ModelProto.SentencePiece(piece="<0x{:02X}>".format(i), score=0.0, type=6)
|
60 |
-
)
|
61 |
-
text_tokenizer.refresh()
|
62 |
-
|
63 |
-
def _build_text_tokenizer(self, encode_special_tokens=False):
|
64 |
-
tokenizer = TextTokenizer(self.vocab_file)
|
65 |
-
self._configure_tokenizer(
|
66 |
-
tokenizer, self.special_tokens, self.max_blank_length, self.byte_fallback, encode_special_tokens
|
67 |
-
)
|
68 |
-
return tokenizer
|
69 |
-
|
70 |
-
def _get_text_tokenizer(self, encode_special_tokens=False):
|
71 |
-
if encode_special_tokens:
|
72 |
-
return self.special_text_tokenizer
|
73 |
-
else:
|
74 |
-
return self.text_tokenizer
|
75 |
|
76 |
@staticmethod
|
77 |
def get_blank_token(length: int):
|
@@ -109,7 +97,7 @@ class SPTokenizer:
|
|
109 |
return text
|
110 |
|
111 |
def encode(
|
112 |
-
|
113 |
) -> List[int]:
|
114 |
"""
|
115 |
@param text: Text to encode.
|
@@ -121,14 +109,14 @@ class SPTokenizer:
|
|
121 |
text = self._preprocess(text, linebreak, whitespaces)
|
122 |
if not add_dummy_prefix:
|
123 |
text = "<n>" + text
|
124 |
-
tmp = self._get_text_tokenizer(
|
125 |
tokens = [x + self.num_image_tokens for x in tmp]
|
126 |
return tokens if add_dummy_prefix else tokens[2:]
|
127 |
|
128 |
-
def decode(self, text_ids: List[int]
|
129 |
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
130 |
ids = [_id for _id in ids if _id >= 0]
|
131 |
-
text = self._get_text_tokenizer(
|
132 |
text = text.replace("<n>", "\n")
|
133 |
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
134 |
for i in range(2, self.max_blank_length + 1):
|
@@ -136,7 +124,7 @@ class SPTokenizer:
|
|
136 |
return text
|
137 |
|
138 |
def tokenize(
|
139 |
-
|
140 |
) -> List[str]:
|
141 |
"""
|
142 |
@param text: Text to encode.
|
@@ -148,7 +136,7 @@ class SPTokenizer:
|
|
148 |
text = self._preprocess(text, linebreak, whitespaces)
|
149 |
if not add_dummy_prefix:
|
150 |
text = "<n>" + text
|
151 |
-
tokens = self._get_text_tokenizer(
|
152 |
return tokens if add_dummy_prefix else tokens[2:]
|
153 |
|
154 |
def __getitem__(self, x: Union[int, str]):
|
@@ -253,25 +241,20 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
253 |
|
254 |
return seq
|
255 |
|
256 |
-
def
|
257 |
self,
|
258 |
-
token_ids: Union[
|
259 |
skip_special_tokens: bool = False,
|
260 |
clean_up_tokenization_spaces: bool = True,
|
261 |
-
spaces_between_special_tokens: bool = True,
|
262 |
**kwargs
|
263 |
) -> str:
|
264 |
-
if isinstance(token_ids
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
else:
|
272 |
-
if self.pad_token_id in token_ids: # remove pad
|
273 |
-
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
274 |
-
return self.sp_tokenizer.decode(token_ids)
|
275 |
|
276 |
def _convert_token_to_id(self, token):
|
277 |
""" Converts a token (str) in an id using the vocab. """
|
@@ -347,12 +330,12 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
347 |
return token_ids_0
|
348 |
|
349 |
def _pad(
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
) -> dict:
|
357 |
"""
|
358 |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
|
|
3 |
import os
|
4 |
|
5 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
|
|
|
6 |
from transformers.utils import logging, PaddingStrategy
|
7 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
8 |
from typing import Dict
|
9 |
+
import sentencepiece as spm
|
10 |
import numpy as np
|
11 |
|
12 |
logger = logging.get_logger(__name__)
|
|
|
16 |
}
|
17 |
|
18 |
|
19 |
+
class TextTokenizer:
|
20 |
+
def __init__(self, model_path):
|
21 |
+
self.sp = spm.SentencePieceProcessor()
|
22 |
+
self.sp.Load(model_path)
|
23 |
+
self.num_tokens = self.sp.vocab_size()
|
24 |
+
|
25 |
+
def encode(self, text):
|
26 |
+
return self.sp.EncodeAsIds(text)
|
27 |
+
|
28 |
+
def decode(self, ids: List[int]):
|
29 |
+
return self.sp.DecodeIds(ids)
|
30 |
+
|
31 |
+
def tokenize(self, text):
|
32 |
+
return self.sp.EncodeAsPieces(text)
|
33 |
+
|
34 |
+
def convert_tokens_to_ids(self, tokens):
|
35 |
+
return [self.sp.PieceToId(token) for token in tokens]
|
36 |
+
|
37 |
+
def convert_token_to_id(self, token):
|
38 |
+
return self.sp.PieceToId(token)
|
39 |
+
|
40 |
+
def convert_id_to_token(self, idx):
|
41 |
+
return self.sp.IdToPiece(idx)
|
42 |
+
|
43 |
+
def __len__(self):
|
44 |
+
return self.num_tokens
|
45 |
+
|
46 |
+
|
47 |
class SPTokenizer:
|
48 |
def __init__(
|
49 |
+
self,
|
50 |
+
vocab_file,
|
51 |
+
max_blank_length=80,
|
52 |
+
byte_fallback=True,
|
53 |
):
|
54 |
assert vocab_file is not None
|
55 |
self.vocab_file = vocab_file
|
56 |
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
57 |
self.max_blank_length = max_blank_length
|
58 |
self.byte_fallback = byte_fallback
|
59 |
+
self.text_tokenizer = TextTokenizer(vocab_file)
|
|
|
60 |
|
61 |
+
def _get_text_tokenizer(self):
|
62 |
+
return self.text_tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
@staticmethod
|
65 |
def get_blank_token(length: int):
|
|
|
97 |
return text
|
98 |
|
99 |
def encode(
|
100 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
101 |
) -> List[int]:
|
102 |
"""
|
103 |
@param text: Text to encode.
|
|
|
109 |
text = self._preprocess(text, linebreak, whitespaces)
|
110 |
if not add_dummy_prefix:
|
111 |
text = "<n>" + text
|
112 |
+
tmp = self._get_text_tokenizer().encode(text)
|
113 |
tokens = [x + self.num_image_tokens for x in tmp]
|
114 |
return tokens if add_dummy_prefix else tokens[2:]
|
115 |
|
116 |
+
def decode(self, text_ids: List[int]) -> str:
|
117 |
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
118 |
ids = [_id for _id in ids if _id >= 0]
|
119 |
+
text = self._get_text_tokenizer().decode(ids)
|
120 |
text = text.replace("<n>", "\n")
|
121 |
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
122 |
for i in range(2, self.max_blank_length + 1):
|
|
|
124 |
return text
|
125 |
|
126 |
def tokenize(
|
127 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
128 |
) -> List[str]:
|
129 |
"""
|
130 |
@param text: Text to encode.
|
|
|
136 |
text = self._preprocess(text, linebreak, whitespaces)
|
137 |
if not add_dummy_prefix:
|
138 |
text = "<n>" + text
|
139 |
+
tokens = self._get_text_tokenizer().tokenize(text)
|
140 |
return tokens if add_dummy_prefix else tokens[2:]
|
141 |
|
142 |
def __getitem__(self, x: Union[int, str]):
|
|
|
241 |
|
242 |
return seq
|
243 |
|
244 |
+
def _decode(
|
245 |
self,
|
246 |
+
token_ids: Union[int, List[int]],
|
247 |
skip_special_tokens: bool = False,
|
248 |
clean_up_tokenization_spaces: bool = True,
|
|
|
249 |
**kwargs
|
250 |
) -> str:
|
251 |
+
if isinstance(token_ids, int):
|
252 |
+
token_ids = [token_ids]
|
253 |
+
if len(token_ids) == 0:
|
254 |
+
return ""
|
255 |
+
if self.pad_token_id in token_ids: # remove pad
|
256 |
+
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
257 |
+
return self.sp_tokenizer.decode(token_ids)
|
|
|
|
|
|
|
|
|
258 |
|
259 |
def _convert_token_to_id(self, token):
|
260 |
""" Converts a token (str) in an id using the vocab. """
|
|
|
330 |
return token_ids_0
|
331 |
|
332 |
def _pad(
|
333 |
+
self,
|
334 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
335 |
+
max_length: Optional[int] = None,
|
336 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
337 |
+
pad_to_multiple_of: Optional[int] = None,
|
338 |
+
return_attention_mask: Optional[bool] = None,
|
339 |
) -> dict:
|
340 |
"""
|
341 |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|