CodeZzz commited on
Commit
543fc4d
·
1 Parent(s): 01cfca4

Upload video inference code

Browse files
README.md ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: cogvlm2
4
+ license_link: https://huggingface.co/THUDM/cogvlm2-video-llama3-chat/blob/main/LICENSE
5
+
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - chat
11
+ - cogvlm2
12
+ - cogvlm--video
13
+
14
+ inference: false
15
+ ---
16
+
17
+ # VisionReward-Video
18
+
19
+ ## Introduction
20
+ We present VisionReward, a general strategy to aligning visual generation models——both image and video generation——with human preferences through a fine-grainedand multi-dimensional framework. We decompose human preferences in images and videos into multiple dimensions,each represented by a series of judgment questions, linearly weighted and summed to an interpretable and accuratescore. To address the challenges of video quality assess-ment, we systematically analyze various dynamic features of videos, which helps VisionReward surpass VideoScore by 17.2% and achieve top performance for video preference prediction.
21
+ Here, we present the model of VisionReward-Video.
22
+
23
+ ## Using this model
24
+ You can quickly install the Python package dependencies and run model inference in our [github](https://github.com/xujz18/VisionReward).
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "CogVLMVideoForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_cogvlm.CogVLMConfig",
7
+ "AutoModelForCausalLM": "modeling_cogvlm.CogVLMVideoForCausalLM"
8
+ },
9
+ "bos_token_id": 128000,
10
+ "eos_token_id": 128001,
11
+ "pad_token_id": 128002,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 14336,
16
+ "max_position_embeddings": 2048,
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_multi_query_heads": 8,
20
+ "rms_norm_eps": 1e-05,
21
+ "template_version": "base",
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.43.1",
25
+ "use_cache": true,
26
+ "vision_config": {
27
+ "dropout_prob": 0.0,
28
+ "hidden_act": "gelu",
29
+ "hidden_size": 1792,
30
+ "image_size": 224,
31
+ "in_channels": 3,
32
+ "intermediate_size": 15360,
33
+ "layer_norm_eps": 1e-06,
34
+ "num_heads": 16,
35
+ "num_hidden_layers": 63,
36
+ "num_positions": 257,
37
+ "patch_size": 14
38
+ },
39
+ "vocab_size": 128256
40
+ }
configuration copy.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"video-question-answering"}
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"task":"image-text-to-text"}
configuration_cogvlm.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Literal
2
+ from transformers import PretrainedConfig
3
+
4
+
5
+ class CogVLMConfig(PretrainedConfig):
6
+ _auto_class = "AutoConfig"
7
+
8
+ def __init__(
9
+ self,
10
+ vocab_size=32000,
11
+ hidden_size=4096,
12
+ intermediate_size=11008,
13
+ num_hidden_layers=32,
14
+ num_attention_heads=32,
15
+ num_multi_query_heads=8,
16
+ hidden_act='silu',
17
+ max_position_embeddings=2048,
18
+ initializer_range=0.02,
19
+ rms_norm_eps=1e-06,
20
+ template_version: Literal["base", "chat"] = "chat",
21
+ pad_token_id=128002,
22
+ bos_token_id=128001,
23
+ eos_token_id=128002,
24
+ tie_word_embeddings=False,
25
+ use_cache=True,
26
+ **kwargs,
27
+ ):
28
+ self.hidden_size = hidden_size
29
+ self.intermediate_size = intermediate_size
30
+ self.num_attention_heads = num_attention_heads
31
+ self.num_multi_query_heads = num_multi_query_heads
32
+ self.max_position_embeddings = max_position_embeddings
33
+ self.rms_norm_eps = rms_norm_eps
34
+ self.initializer_range = initializer_range
35
+ self.vocab_size = vocab_size
36
+ self.num_hidden_layers = num_hidden_layers
37
+ self.hidden_act = hidden_act
38
+ self.template_version = template_version
39
+ self.use_cache = use_cache
40
+ super().__init__(
41
+ pad_token_id=pad_token_id,
42
+ bos_token_id=bos_token_id,
43
+ eos_token_id=eos_token_id,
44
+ tie_word_embeddings=tie_word_embeddings,
45
+ **kwargs,
46
+ )
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "eos_token_id": 128001,
4
+ "pad_token_id": 128002,
5
+ "do_sample": true,
6
+ "temperature": 0.1,
7
+ "max_length": 2048,
8
+ "top_p": 0.1,
9
+ "top_k": 1,
10
+ "transformers_version": "4.43.1"
11
+ }
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:896bfc9489d64439c2d15b18c0fff6a1690bb46be6c05b0212a50139d099f1d5
3
+ size 4976699712
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df62f6ecdb7a83b7ceef3ffa90a7141ffbdb2fad58414a6ad6ae2a88c7d25fbf
3
+ size 4999803504
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b57aac55aad9c15b4963bf3099d4611672c2b26f96d746daf5bdba1467b81f9
3
+ size 4915917160
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1740571d80cdeba6051aa57145c2249c869e973280eaeb99931c9fd04c21ec48
3
+ size 4956242104
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbdbd6ba26ba40e29192f299ec7c4a8261a29a69ea208e7f03f0de623a56589d
3
+ size 4115863248
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fc7209216b9fe05cc041b706928bd52ea0b546cc1b179ff2be1742936f07f86
3
+ size 1050673280
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
model_config.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Literal
2
+ from transformers import PretrainedConfig
3
+
4
+
5
+ class CogVLMConfig(PretrainedConfig):
6
+ _auto_class = "AutoConfig"
7
+
8
+ def __init__(
9
+ self,
10
+ vocab_size=32000,
11
+ hidden_size=4096,
12
+ intermediate_size=11008,
13
+ num_hidden_layers=32,
14
+ num_attention_heads=32,
15
+ num_multi_query_heads=8,
16
+ hidden_act='silu',
17
+ max_position_embeddings=2048,
18
+ initializer_range=0.02,
19
+ rms_norm_eps=1e-06,
20
+ template_version: Literal["base", "chat"] = "chat",
21
+ pad_token_id=0,
22
+ bos_token_id=1,
23
+ eos_token_id=2,
24
+ tie_word_embeddings=False,
25
+ use_cache=True,
26
+ **kwargs,
27
+ ):
28
+ self.hidden_size = hidden_size
29
+ self.intermediate_size = intermediate_size
30
+ self.num_attention_heads = num_attention_heads
31
+ self.num_multi_query_heads = num_multi_query_heads
32
+ self.max_position_embeddings = max_position_embeddings
33
+ self.rms_norm_eps = rms_norm_eps
34
+ self.initializer_range = initializer_range
35
+ self.vocab_size = vocab_size
36
+ self.num_hidden_layers = num_hidden_layers
37
+ self.hidden_act = hidden_act
38
+ self.template_version = template_version
39
+ self.use_cache = use_cache
40
+ super().__init__(
41
+ pad_token_id=pad_token_id,
42
+ bos_token_id=bos_token_id,
43
+ eos_token_id=eos_token_id,
44
+ tie_word_embeddings=tie_word_embeddings,
45
+ **kwargs,
46
+ )
modeling_cogvlm.py ADDED
@@ -0,0 +1,840 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """largely copy from llama and adapt for cogvlm"""
2
+ import warnings
3
+ from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any
4
+
5
+ import math
6
+ import torch
7
+ from torch import nn
8
+ from torch.nn import CrossEntropyLoss
9
+ from torchvision import transforms
10
+ from einops import rearrange
11
+ from transformers import PreTrainedModel, PreTrainedTokenizer
12
+ from transformers.utils.logging import get_logger
13
+ from transformers.activations import ACT2FN
14
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
15
+ from torchvision.transforms import Lambda
16
+ from torchvision.transforms._transforms_video import NormalizeVideo, CenterCropVideo
17
+ from pytorchvideo.transforms import ShortSideScale
18
+ from .configuration_cogvlm import CogVLMConfig
19
+ from .util import FastRotaryEmbedding
20
+ from .visual import EVA2CLIPModel
21
+
22
+ if TYPE_CHECKING:
23
+ from transformers.utils import ModelOutput
24
+
25
+ logger = get_logger(__name__)
26
+
27
+ LANGUAGE_TOKEN_TYPE = 0
28
+ VISION_TOKEN_TYPE = 1
29
+
30
+
31
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
32
+ def _make_causal_mask(
33
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
34
+ ):
35
+ """
36
+ Make causal mask used for bi-directional self-attention.
37
+ """
38
+ bsz, tgt_len = input_ids_shape
39
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
40
+ mask_cond = torch.arange(mask.size(-1), device=device)
41
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
42
+ mask = mask.to(dtype)
43
+
44
+ if past_key_values_length > 0:
45
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
46
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
47
+
48
+
49
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
50
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
51
+ """
52
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
53
+ """
54
+ bsz, src_len = mask.size()
55
+ tgt_len = tgt_len if tgt_len is not None else src_len
56
+
57
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
58
+
59
+ inverted_mask = 1.0 - expanded_mask
60
+
61
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
62
+
63
+
64
+ class RMSNorm(nn.Module):
65
+ def __init__(self, hidden_size, eps=1e-5):
66
+ super().__init__()
67
+ self.weight = nn.Parameter(torch.ones(hidden_size))
68
+ self.variance_epsilon = eps
69
+
70
+ def forward(self, hidden_states):
71
+ input_dtype = hidden_states.dtype
72
+ hidden_states = hidden_states.to(torch.float32)
73
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
74
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
75
+ return (self.weight * hidden_states).to(input_dtype)
76
+
77
+
78
+ class MLP(nn.Module):
79
+ def __init__(self, config):
80
+ super().__init__()
81
+ self.hidden_size = config.hidden_size
82
+ self.intermediate_size = config.intermediate_size
83
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
84
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
85
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
86
+ self.act_fn = ACT2FN[config.hidden_act]
87
+
88
+ def forward(self, x):
89
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
90
+ return down_proj
91
+
92
+
93
+ def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]":
94
+ vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool)
95
+ vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (
96
+ token_type_ids[:, 1:] == VISION_TOKEN_TYPE)
97
+ language_token_mask = ~vision_token_mask
98
+ return vision_token_mask, language_token_mask
99
+
100
+
101
+ class VisionExpertMLP(nn.Module):
102
+ def __init__(self, config):
103
+ super().__init__()
104
+ self.language_mlp = MLP(config)
105
+ # self.vision_mlp = MLP(config)
106
+
107
+ def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"):
108
+ # output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device)
109
+ # vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
110
+ # output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask])
111
+ # output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask])
112
+
113
+ output = self.language_mlp(hidden_states)
114
+ return output
115
+
116
+
117
+ def attention_fn(
118
+ query_layer: "torch.tensor(B, H, L, HD)",
119
+ key_layer: "torch.tensor(B, H, L, HD)",
120
+ value_layer: "torch.tensor(B, H, L, HD)",
121
+ attention_mask: "torch.tensor(B, H, L, HD)",
122
+ *,
123
+ scaling_attention_score: bool = True,
124
+ attention_dropout: nn.Module = None
125
+ ):
126
+ attention_mask_bool = (attention_mask == 0)
127
+ is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all()
128
+ is_full = (attention_mask_bool > 0).all()
129
+ if not (int(torch.__version__.split('.')[0]) >= 2):
130
+ warnings.warn("It's recommended to use torch2.0 or higher.")
131
+ if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle):
132
+ dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
133
+ return torch.nn.functional.scaled_dot_product_attention(
134
+ query_layer, key_layer, value_layer,
135
+ attn_mask=None,
136
+ dropout_p=dropout_p,
137
+ is_causal=not is_full
138
+ )
139
+ else:
140
+ if scaling_attention_score:
141
+ query_layer = query_layer / math.sqrt(query_layer.shape[-1])
142
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
143
+ attention_scores = attention_scores + attention_mask
144
+ attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype)
145
+ if attention_dropout is not None:
146
+ attention_scores = attention_dropout(attention_scores)
147
+ context_layer = torch.matmul(attention_scores, value_layer)
148
+ return context_layer
149
+
150
+
151
+ class VisionExpertAttention(nn.Module):
152
+ def __init__(self, config):
153
+ super().__init__()
154
+ self.config = config
155
+ self.hidden_size = config.hidden_size
156
+ self.num_attention_heads = config.num_attention_heads
157
+ self.num_multi_query_heads = config.num_multi_query_heads
158
+ self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
159
+ self.stride = [self.num_attention_heads, self.num_multi_query_heads, self.num_multi_query_heads]
160
+ self.qkv_size = self.hidden_size + self.hidden_size_per_attention_head * self.num_multi_query_heads * 2
161
+ self.head_dim = self.hidden_size // self.num_attention_heads
162
+ self.max_position_embeddings = config.max_position_embeddings
163
+ self.rotary_emb = FastRotaryEmbedding(dim=self.head_dim, pos_idx_in_fp32=False, base=500000)
164
+ # self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=True)
165
+ # self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
166
+ self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=False)
167
+ self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
168
+
169
+ def _transpose_for_scores(self, tensor):
170
+ """Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
171
+ new_tensor_shape = tensor.size()[:-1] + \
172
+ (-1, # flexible for multi-query
173
+ self.hidden_size_per_attention_head)
174
+ tensor = tensor.view(*new_tensor_shape)
175
+ return tensor.permute(0, 2, 1, 3)
176
+
177
+ def forward(
178
+ self,
179
+ hidden_states: torch.Tensor,
180
+ token_type_ids: torch.LongTensor,
181
+ position_ids: torch.LongTensor,
182
+ attention_mask: Optional[torch.Tensor] = None,
183
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
184
+ output_attentions: bool = False,
185
+ use_cache: bool = False,
186
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
187
+ bsz, q_len, _ = hidden_states.size()
188
+ # vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
189
+
190
+ shape = list(hidden_states.shape)
191
+ shape[-1] = self.qkv_size
192
+ # mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device)
193
+ # mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask])
194
+ # mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask])
195
+ mixed_raw_layer = self.language_expert_query_key_value(hidden_states)
196
+
197
+ # query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1)
198
+ factor = mixed_raw_layer.size()[-1] // sum(self.stride)
199
+ query_states, key_states, value_states = torch.split(mixed_raw_layer, [factor * x for x in self.stride], dim=-1)
200
+
201
+ query_states = self._transpose_for_scores(query_states) # B, H, L, HD
202
+ key_states = self._transpose_for_scores(key_states) # B, H, L, HD
203
+ value_states = self._transpose_for_scores(value_states) # B, H, L, HD
204
+
205
+ kv_seq_len = key_states.shape[-2]
206
+ if past_key_value is not None:
207
+ kv_seq_len += past_key_value[0].shape[-2]
208
+
209
+ query_states, key_states = self.rotary_emb(query_states, key_states, position_ids=position_ids,
210
+ max_seqlen=position_ids.max() + 1)
211
+
212
+ if past_key_value is not None:
213
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
214
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
215
+
216
+ past_key_value = (key_states, value_states) if use_cache else None
217
+
218
+ key_states = key_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads, -1,
219
+ -1).contiguous().view(
220
+ bsz, self.num_attention_heads, *key_states.shape[2:])
221
+ value_states = value_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads,
222
+ -1,
223
+ -1).contiguous().view(bsz, self.num_attention_heads,
224
+ *value_states.shape[2:])
225
+
226
+ context_layer = attention_fn(
227
+ query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
228
+ scaling_attention_score=True, attention_dropout=None)
229
+ if context_layer.size() != (bsz, self.num_attention_heads, q_len, self.head_dim):
230
+ raise ValueError(
231
+ f"`attn_output` should be of size {(bsz, self.num_attention_heads, q_len, self.head_dim)}, but is"
232
+ f" {context_layer.size()}"
233
+ )
234
+ context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size)
235
+
236
+ # attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device)
237
+ # attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask])
238
+ # attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask])
239
+
240
+ attn_output = self.language_expert_dense(context_layer)
241
+
242
+ if output_attentions:
243
+ warnings.warn("output_attentions is not implemented.")
244
+
245
+ return attn_output, None, past_key_value
246
+
247
+
248
+ class CogVLMDecoderLayer(nn.Module):
249
+ def __init__(self, config):
250
+ super().__init__()
251
+ self.hidden_size = config.hidden_size
252
+ self.self_attn = VisionExpertAttention(config=config)
253
+ self.mlp = VisionExpertMLP(config)
254
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
255
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
256
+
257
+ def forward(
258
+ self,
259
+ hidden_states: torch.Tensor,
260
+ token_type_ids: torch.LongTensor,
261
+ position_ids: torch.LongTensor,
262
+ attention_mask: Optional[torch.Tensor] = None,
263
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
264
+ output_attentions: Optional[bool] = False,
265
+ use_cache: Optional[bool] = False,
266
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
267
+ residual = hidden_states
268
+
269
+ hidden_states = self.input_layernorm(hidden_states)
270
+
271
+ # Self Attention
272
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
273
+ hidden_states=hidden_states,
274
+ token_type_ids=token_type_ids,
275
+ position_ids=position_ids,
276
+ attention_mask=attention_mask,
277
+ past_key_value=past_key_value,
278
+ output_attentions=output_attentions,
279
+ use_cache=use_cache,
280
+ )
281
+ hidden_states = residual + hidden_states
282
+
283
+ # Fully Connected
284
+ residual = hidden_states
285
+ hidden_states = self.post_attention_layernorm(hidden_states)
286
+ hidden_states = self.mlp(hidden_states, token_type_ids=token_type_ids)
287
+ hidden_states = residual + hidden_states
288
+
289
+ outputs = (hidden_states,)
290
+
291
+ if output_attentions:
292
+ outputs += (self_attn_weights,)
293
+
294
+ if use_cache:
295
+ outputs += (present_key_value,)
296
+
297
+ return outputs # type: ignore
298
+
299
+
300
+ class CogVLMPreTrainedModel(PreTrainedModel):
301
+ config_class = CogVLMConfig
302
+ base_model_prefix = "model"
303
+ supports_gradient_checkpointing = False
304
+ _no_split_modules = ["CogVLMDecoderLayer"]
305
+ _skip_keys_device_placement = "past_key_values"
306
+
307
+ def _init_weights(self, module):
308
+ std = self.config.initializer_range
309
+ if isinstance(module, nn.Linear):
310
+ module.weight.data.normal_(mean=0.0, std=std)
311
+ if module.bias is not None:
312
+ module.bias.data.zero_()
313
+ elif isinstance(module, nn.Embedding):
314
+ module.weight.data.normal_(mean=0.0, std=std)
315
+ if module.padding_idx is not None:
316
+ module.weight.data[module.padding_idx].zero_()
317
+
318
+
319
+ def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
320
+ if images_list is None or len(images_list) == 0:
321
+ return True
322
+ for image_list in images_list:
323
+ if len(image_list):
324
+ return False
325
+ return True
326
+
327
+
328
+ def build_position_ids(x: "torch.BoolTensor(B, L)",
329
+ attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)":
330
+ if attention_mask is not None:
331
+ tmp = x.clone()
332
+ tmp[~(attention_mask.bool())] = -1
333
+ else:
334
+ tmp = x.clone()
335
+ # image boi eoi token as LANGUAGE_TOKEN_TYPE
336
+ is_boi_eoi = torch.zeros_like(x, dtype=torch.bool)
337
+ is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)
338
+ is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE)
339
+ is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE)
340
+ is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE)
341
+ tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE
342
+ # final position ids
343
+ y = torch.zeros_like(x, dtype=torch.long)
344
+ y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | (
345
+ (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE))
346
+ y = y.cumsum(dim=-1)
347
+ return y
348
+
349
+
350
+ class CogVLMVideoModel(CogVLMPreTrainedModel):
351
+ def __init__(self, config):
352
+ super().__init__(config)
353
+ self.padding_idx = 128002
354
+ self.vocab_size = config.vocab_size
355
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
356
+ self.layers = nn.ModuleList([CogVLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
357
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
358
+
359
+ self.vision = EVA2CLIPModel(config)
360
+
361
+ self.gradient_checkpointing = False
362
+ # Initialize weights and apply final processing
363
+ self.post_init()
364
+
365
+ def encode_images(self, images: List[List[torch.Tensor]], ) -> torch.Tensor:
366
+ images_list, images = images, []
367
+
368
+ images = []
369
+ for image_list in images_list:
370
+ for image in image_list:
371
+ images.append(image)
372
+
373
+ # images = torch.stack(images) # video images is already stacked
374
+ images_features = self.vision(images[0])
375
+ return images_features
376
+
377
+ def forward(
378
+ self,
379
+ input_ids: torch.LongTensor = None,
380
+ images: List[List[torch.Tensor]] = None,
381
+ token_type_ids: Optional[torch.LongTensor] = None,
382
+ attention_mask: Optional[torch.Tensor] = None,
383
+ position_ids: Optional[torch.LongTensor] = None,
384
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
385
+ inputs_embeds: Optional[torch.FloatTensor] = None,
386
+ use_cache: Optional[bool] = None,
387
+ output_attentions: Optional[bool] = None,
388
+ output_hidden_states: Optional[bool] = None,
389
+ return_dict: Optional[bool] = None,
390
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
391
+ """take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
392
+
393
+ if past_key_values is not None:
394
+ pass # generate mode with past_key_values. the image features are already mapped
395
+ else:
396
+ # not allow for inputs_embeds, because we want to process image feature
397
+ assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
398
+ if not is_empty(images): # multi-modality
399
+ assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!"
400
+ assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
401
+ inputs_embeds = self.embed_tokens(input_ids)
402
+ images_features = self.encode_images(images)
403
+ images_features = rearrange(images_features, 'b n d -> (b n) d')
404
+ images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
405
+ inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features)
406
+ else: # single-modality
407
+ if token_type_ids is None:
408
+ token_type_ids = torch.ones_like(input_ids, dtype=torch.long,
409
+ device=input_ids.device) * LANGUAGE_TOKEN_TYPE
410
+ assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}"
411
+ inputs_embeds = self.embed_tokens(input_ids)
412
+
413
+ if position_ids is None:
414
+ position_ids = build_position_ids(token_type_ids, attention_mask)
415
+ input_ids = None
416
+ return self.llm_forward(
417
+ input_ids=input_ids,
418
+ token_type_ids=token_type_ids,
419
+ attention_mask=attention_mask,
420
+ position_ids=position_ids,
421
+ past_key_values=past_key_values,
422
+ inputs_embeds=inputs_embeds,
423
+ use_cache=use_cache,
424
+ output_attentions=output_attentions,
425
+ output_hidden_states=output_hidden_states,
426
+ return_dict=return_dict,
427
+ )
428
+
429
+ def llm_forward(
430
+ self,
431
+ input_ids: torch.LongTensor = None,
432
+ token_type_ids: torch.LongTensor = None,
433
+ attention_mask: Optional[torch.Tensor] = None,
434
+ position_ids: Optional[torch.LongTensor] = None,
435
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
436
+ inputs_embeds: Optional[torch.FloatTensor] = None,
437
+ use_cache: Optional[bool] = None,
438
+ output_attentions: Optional[bool] = None,
439
+ output_hidden_states: Optional[bool] = None,
440
+ return_dict: Optional[bool] = None,
441
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
442
+ """largely copy from llama forward and adapt for cogvlm with `token_type_ids`"""
443
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
444
+ output_hidden_states = (
445
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
446
+ )
447
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
448
+
449
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
450
+
451
+ # retrieve input_ids and inputs_embeds
452
+ if input_ids is not None and inputs_embeds is not None:
453
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
454
+ elif input_ids is not None:
455
+ batch_size, seq_length = input_ids.shape
456
+ elif inputs_embeds is not None:
457
+ batch_size, seq_length, _ = inputs_embeds.shape
458
+ else:
459
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
460
+
461
+ seq_length_with_past = seq_length
462
+ past_key_values_length = 0
463
+
464
+ if past_key_values is not None:
465
+ past_key_values_length = past_key_values[0][0].shape[2]
466
+ seq_length_with_past = seq_length_with_past + past_key_values_length
467
+
468
+ if position_ids is None:
469
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
470
+ position_ids = torch.arange(
471
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
472
+ )
473
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
474
+ else:
475
+ position_ids = position_ids.view(-1, seq_length).long()
476
+
477
+ if inputs_embeds is None:
478
+ inputs_embeds = self.embed_tokens(input_ids)
479
+ # embed positions
480
+ if attention_mask is None:
481
+ attention_mask = torch.ones(
482
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
483
+ )
484
+ attention_mask = self._prepare_decoder_attention_mask(
485
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
486
+ )
487
+
488
+ hidden_states = inputs_embeds
489
+
490
+ # decoder layers
491
+ all_hidden_states = () if output_hidden_states else None
492
+ all_self_attns = () if output_attentions else None
493
+ next_decoder_cache = () if use_cache else None
494
+
495
+ for idx, decoder_layer in enumerate(self.layers):
496
+ if output_hidden_states:
497
+ all_hidden_states += (hidden_states,)
498
+
499
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
500
+ layer_outputs = decoder_layer(
501
+ hidden_states,
502
+ token_type_ids=token_type_ids,
503
+ attention_mask=attention_mask,
504
+ position_ids=position_ids,
505
+ past_key_value=past_key_value,
506
+ output_attentions=output_attentions,
507
+ use_cache=use_cache,
508
+ )
509
+ hidden_states = layer_outputs[0]
510
+
511
+ if use_cache:
512
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
513
+
514
+ if output_attentions:
515
+ all_self_attns += (layer_outputs[1],)
516
+
517
+ hidden_states = self.norm(hidden_states)
518
+
519
+ # add hidden states from the last decoder layer
520
+ if output_hidden_states:
521
+ all_hidden_states += (hidden_states,)
522
+
523
+ next_cache = next_decoder_cache if use_cache else None
524
+ if not return_dict:
525
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
526
+ return BaseModelOutputWithPast(
527
+ last_hidden_state=hidden_states,
528
+ past_key_values=next_cache,
529
+ hidden_states=all_hidden_states,
530
+ attentions=all_self_attns,
531
+ )
532
+
533
+ def get_input_embeddings(self):
534
+ return self.embed_tokens
535
+
536
+ def set_input_embeddings(self, value):
537
+ self.embed_tokens = value
538
+
539
+ # noinspection PyMethodMayBeStatic
540
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
541
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
542
+ # create causal mask
543
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
544
+ combined_attention_mask = None
545
+ if input_shape[-1] > 1:
546
+ combined_attention_mask = _make_causal_mask(
547
+ input_shape,
548
+ inputs_embeds.dtype,
549
+ device=inputs_embeds.device,
550
+ past_key_values_length=past_key_values_length,
551
+ )
552
+
553
+ if attention_mask is not None:
554
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
555
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
556
+ inputs_embeds.device
557
+ )
558
+ combined_attention_mask = (
559
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
560
+ )
561
+
562
+ return combined_attention_mask
563
+
564
+
565
+ def _history_to_prompt(signal_type, history, query):
566
+ if signal_type == 'base':
567
+ return query
568
+ elif signal_type == 'vqa':
569
+ answer_format = 'Short answer:'
570
+ elif signal_type == 'chat':
571
+ answer_format = 'Answer:'
572
+ else:
573
+ assert False, f"Unknown signal type {signal_type}"
574
+
575
+ prompt = ''
576
+ for i, (old_query, response) in enumerate(history):
577
+ prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n"
578
+ prompt += 'Question: {} {}'.format(query, answer_format)
579
+ return prompt
580
+
581
+
582
+ class CogVLMVideoForCausalLM(CogVLMPreTrainedModel):
583
+ _auto_class = "AutoModelForCausalLM"
584
+
585
+ def __init__(self, config):
586
+ super().__init__(config)
587
+ self.model = CogVLMVideoModel(config)
588
+ self.vocab_size = config.vocab_size
589
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
590
+ self.video_downsample = 1 # TODO: change this to config
591
+
592
+ # Initialize weights and apply final processing
593
+ self.post_init()
594
+
595
+ def get_input_embeddings(self):
596
+ return self.model.embed_tokens
597
+
598
+ def set_input_embeddings(self, value):
599
+ self.model.embed_tokens = value
600
+
601
+ def get_output_embeddings(self):
602
+ return self.lm_head
603
+
604
+ def set_output_embeddings(self, new_embeddings):
605
+ self.lm_head = new_embeddings
606
+
607
+ def set_decoder(self, decoder):
608
+ self.model = decoder
609
+
610
+ def get_decoder(self):
611
+ return self.model
612
+
613
+ def forward(
614
+ self,
615
+ input_ids: torch.LongTensor = None,
616
+ images: List[List[torch.Tensor]] = None,
617
+ token_type_ids: Optional[torch.LongTensor] = None,
618
+ attention_mask: Optional[torch.Tensor] = None,
619
+ position_ids: Optional[torch.LongTensor] = None,
620
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
621
+ inputs_embeds: Optional[torch.FloatTensor] = None,
622
+ use_cache: Optional[bool] = None,
623
+ output_attentions: Optional[bool] = None,
624
+ output_hidden_states: Optional[bool] = None,
625
+ return_dict: Optional[bool] = None,
626
+ labels: Optional[torch.LongTensor] = None,
627
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
628
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
629
+ output_hidden_states = (
630
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
631
+ )
632
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
633
+
634
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
635
+ outputs = self.model(
636
+ input_ids=input_ids,
637
+ images=images,
638
+ token_type_ids=token_type_ids,
639
+ attention_mask=attention_mask,
640
+ position_ids=position_ids,
641
+ past_key_values=past_key_values,
642
+ inputs_embeds=inputs_embeds,
643
+ use_cache=use_cache,
644
+ output_attentions=output_attentions,
645
+ output_hidden_states=output_hidden_states,
646
+ return_dict=return_dict,
647
+ )
648
+
649
+ hidden_states = outputs[0]
650
+ logits = self.lm_head(hidden_states)
651
+ logits = logits.float()
652
+
653
+ loss = None
654
+ if labels is not None:
655
+ # Shift so that tokens < n predict n
656
+ shift_logits = logits[..., :-1, :].contiguous()
657
+ shift_labels = labels[..., 1:].contiguous()
658
+ # Flatten the tokens
659
+ loss_fct = CrossEntropyLoss()
660
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
661
+ shift_labels = shift_labels.view(-1)
662
+ # Enable model parallelism
663
+ shift_labels = shift_labels.to(shift_logits.device)
664
+ loss = loss_fct(shift_logits, shift_labels)
665
+
666
+ if not return_dict:
667
+ output = (logits,) + outputs[1:]
668
+ return (loss,) + output if loss is not None else output
669
+
670
+ return CausalLMOutputWithPast(
671
+ loss=loss,
672
+ logits=logits,
673
+ past_key_values=outputs.past_key_values,
674
+ hidden_states=outputs.hidden_states,
675
+ attentions=outputs.attentions,
676
+ )
677
+
678
+ def _prepare_attention_mask_for_generation(
679
+ self,
680
+ inputs: torch.Tensor,
681
+ pad_token_id: Optional[int],
682
+ eos_token_id: Optional[Union[int, List[int]]],
683
+ ) -> torch.LongTensor:
684
+ return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) # type: ignore
685
+
686
+ def prepare_inputs_for_generation(
687
+ self, input_ids, token_type_ids, images=None, past_key_values=None, attention_mask=None, inputs_embeds=None,
688
+ **kwargs
689
+ ):
690
+ # build position_ids if needed
691
+ position_ids = kwargs.get("position_ids", None)
692
+ if position_ids is None:
693
+ position_ids = build_position_ids(token_type_ids, attention_mask)
694
+
695
+ if past_key_values:
696
+ input_ids = input_ids[:, -1:]
697
+ token_type_ids = token_type_ids[:, -1:]
698
+ position_ids = position_ids[:, -1:]
699
+
700
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
701
+ if inputs_embeds is not None and past_key_values is None:
702
+ model_inputs = {"inputs_embeds": inputs_embeds}
703
+ else:
704
+ model_inputs = {"input_ids": input_ids}
705
+
706
+ model_inputs.update(
707
+ {
708
+ "token_type_ids": token_type_ids,
709
+ "images": images,
710
+ "position_ids": position_ids,
711
+ "past_key_values": past_key_values,
712
+ "use_cache": kwargs.get("use_cache"),
713
+ "attention_mask": attention_mask,
714
+ }
715
+ )
716
+ return model_inputs
717
+
718
+ def _update_model_kwargs_for_generation(
719
+ self,
720
+ outputs: "ModelOutput",
721
+ model_kwargs: Dict[str, Any],
722
+ is_encoder_decoder: bool = False,
723
+ standardize_cache_format: bool = False,
724
+ ) -> Dict[str, Any]:
725
+ # update past_key_values
726
+ cache_name, cache = self._extract_past_from_model_output(
727
+ outputs, standardize_cache_format=standardize_cache_format
728
+ )
729
+ model_kwargs[cache_name] = cache
730
+
731
+ if getattr(outputs, "state", None) is not None:
732
+ model_kwargs["state"] = outputs.state
733
+
734
+ # update token_type_ids with last value
735
+ if "token_type_ids" in model_kwargs:
736
+ token_type_ids = model_kwargs["token_type_ids"]
737
+ new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype,
738
+ device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE
739
+ model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
740
+
741
+ if not is_encoder_decoder:
742
+ # update attention mask
743
+ if "attention_mask" in model_kwargs:
744
+ attention_mask = model_kwargs["attention_mask"]
745
+ model_kwargs["attention_mask"] = torch.cat(
746
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
747
+ )
748
+ else:
749
+ # update decoder attention mask
750
+ if "decoder_attention_mask" in model_kwargs:
751
+ decoder_attention_mask = model_kwargs["decoder_attention_mask"]
752
+ model_kwargs["decoder_attention_mask"] = torch.cat(
753
+ [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
754
+ dim=-1,
755
+ )
756
+
757
+ return model_kwargs
758
+
759
+ def _reorder_cache(self, past_key_values, beam_idx):
760
+ reordered_past = ()
761
+ for layer_past in past_key_values:
762
+ reordered_past += (
763
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
764
+ )
765
+ return reordered_past
766
+
767
+ def build_conversation_input_ids(
768
+ self,
769
+ tokenizer: "PreTrainedTokenizer",
770
+ *,
771
+ query: str,
772
+ history: Optional[List[Tuple[str, str]]] = None,
773
+ images: Optional[List["PIL.Image"]] = None,
774
+ template_version: Optional[Literal["base", "chat", "vqa"]] = None,
775
+ answer: str = None,
776
+ ):
777
+ image_size: int = self.config.vision_config['image_size']
778
+ template_version = template_version or self.config.template_version
779
+ assert images is None or len(images) <= 1, f"not support multi images by now."
780
+ history = history or []
781
+ text = _history_to_prompt(template_version, history, query)
782
+ input_ids = [tokenizer.bos_token_id]
783
+ token_type_ids = [LANGUAGE_TOKEN_TYPE]
784
+ add_time_indices = True if template_version == 'chat' else False
785
+ if images is not None and len(images) == 1:
786
+ # vision
787
+ transform = transforms.Compose(
788
+ [
789
+ # UniformTemporalSubsample(num_frames),
790
+ Lambda(lambda x: x / 255.0),
791
+ NormalizeVideo(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
792
+ ShortSideScale(size=image_size),
793
+ CenterCropVideo(image_size),
794
+ # RandomHorizontalFlipVideo(p=0.5),
795
+ ]
796
+ )
797
+ images = [transform(images[0]).transpose(0, 1)] # (T, C, H, W)
798
+ num_eois = len(images[0])
799
+ tokenizer.pad_token_id = 128002
800
+ if not add_time_indices:
801
+ vision_token_num = (64 + 2) * num_eois
802
+ input_ids += [tokenizer.pad_token_id] * vision_token_num # add spetial token
803
+ token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
804
+ else:
805
+ video_ids, video_type_ids = [], []
806
+ sing_vision_token_num = (64 + 2)
807
+ for _time_idx in range(num_eois):
808
+ video_ids += [tokenizer.pad_token_id] * sing_vision_token_num
809
+ video_type_ids += [VISION_TOKEN_TYPE] * sing_vision_token_num
810
+ # add time indices
811
+ time_indices = tokenizer.encode(str(_time_idx), add_special_tokens=False)
812
+ video_ids += time_indices
813
+ video_type_ids += [LANGUAGE_TOKEN_TYPE] * len(time_indices)
814
+ # llama3 adapt for cogvlm
815
+ input_ids += video_ids
816
+ token_type_ids += video_type_ids
817
+
818
+ text_ids = tokenizer.encode(text, add_special_tokens=False)
819
+
820
+ if answer is not None:
821
+ answer_ids = tokenizer.encode(answer, add_special_tokens=False)
822
+ answer_ids += [tokenizer.eos_token_id]
823
+ text_ids += answer_ids
824
+
825
+ input_ids += text_ids
826
+ token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids)
827
+ attention_mask = [1] * len(input_ids)
828
+ if answer is not None:
829
+ labels = [-100 for _ in range(len(input_ids) - len(answer_ids))] + answer_ids
830
+ labels = torch.tensor(labels, dtype=torch.long)
831
+ else:
832
+ labels = None
833
+
834
+ return {
835
+ 'input_ids': torch.tensor(input_ids, dtype=torch.long),
836
+ 'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
837
+ 'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
838
+ 'images': images,
839
+ 'labels': labels,
840
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|begin_of_text|>",
3
+ "eos_token": "<|end_of_text|>"
4
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% else %}{{ eos_token }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|end_of_text|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "token_type_ids",
2059
+ "attention_mask",
2060
+ "images"
2061
+ ],
2062
+ "model_max_length": 2048,
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }
util.py ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ from einops import rearrange
5
+ import torch.nn.functional as F
6
+
7
+ import triton
8
+ import triton.language as tl
9
+
10
+
11
+ @triton.jit
12
+ def rotary_kernel(
13
+ OUT,
14
+ X,
15
+ COS,
16
+ SIN,
17
+ CU_SEQLENS,
18
+ SEQLEN_OFFSETS,
19
+ seqlen,
20
+ nheads,
21
+ rotary_dim,
22
+ seqlen_ro,
23
+ CACHE_KEY_SEQLEN,
24
+ # strides
25
+ stride_out_batch,
26
+ stride_out_nheads,
27
+ stride_out_seqlen,
28
+ stride_out_headdim,
29
+ stride_x_batch,
30
+ stride_x_nheads,
31
+ stride_x_seqlen,
32
+ stride_x_headdim,
33
+ BLOCK_K: tl.constexpr,
34
+ IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
35
+ IS_VARLEN: tl.constexpr,
36
+ INTERLEAVED: tl.constexpr,
37
+ CONJUGATE: tl.constexpr,
38
+ BLOCK_M: tl.constexpr,
39
+ ):
40
+ pid_m = tl.program_id(axis=0)
41
+ pid_batch = tl.program_id(axis=1)
42
+ pid_head = tl.program_id(axis=2)
43
+ rotary_dim_half = rotary_dim // 2
44
+
45
+ if not IS_VARLEN:
46
+ X = X + pid_batch * stride_x_batch + pid_head * stride_x_nheads
47
+ OUT = OUT + pid_batch * stride_out_batch + pid_head * stride_out_nheads
48
+ COS = COS + pid_batch * seqlen_ro * rotary_dim_half
49
+ SIN = SIN + pid_batch * seqlen_ro * rotary_dim_half
50
+ else:
51
+ start_idx = tl.load(CU_SEQLENS + pid_batch)
52
+ seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx
53
+ X = X + start_idx * stride_x_seqlen + pid_head * stride_x_nheads
54
+ OUT = OUT + start_idx * stride_out_seqlen + pid_head * stride_out_nheads
55
+
56
+ if pid_m * BLOCK_M >= seqlen:
57
+ return
58
+ rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
59
+ if not IS_SEQLEN_OFFSETS_TENSOR:
60
+ rm_cs = rm + SEQLEN_OFFSETS
61
+ else:
62
+ rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
63
+ rk = tl.arange(0, BLOCK_K)
64
+ rk_half = tl.arange(0, BLOCK_K // 2)
65
+
66
+ if not INTERLEAVED:
67
+ # Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT
68
+ X = X + (rm[:, None] * stride_x_seqlen + rk_half[None, :] * stride_x_headdim)
69
+ COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
70
+ SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
71
+ cos = tl.load(
72
+ COS, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=1.0
73
+ )
74
+ sin = tl.load(
75
+ SIN, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=0.0
76
+ )
77
+ x0 = tl.load(
78
+ X, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), other=0.0
79
+ )
80
+ x1 = tl.load(
81
+ X + rotary_dim_half * stride_x_headdim,
82
+ mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
83
+ other=0.0,
84
+ )
85
+ if CONJUGATE:
86
+ sin = -sin
87
+ o0 = x0 * cos - x1 * sin
88
+ o1 = x0 * sin + x1 * cos
89
+ # write back result
90
+ OUT = OUT + (rm[:, None] * stride_out_seqlen + rk_half[None, :] * stride_out_headdim)
91
+ tl.store(OUT, o0, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half))
92
+ tl.store(
93
+ OUT + rotary_dim_half * stride_out_headdim,
94
+ o1,
95
+ mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
96
+ )
97
+ else:
98
+ # We don't want to load X[0, 2, 4, ...] and X[1, 3, 5, ...] separately since both are slow.
99
+ # Instead, we load x0 = X[0, 1, 2, 3, ...] and x1 = X[1, 0, 3, 2, ...].
100
+ # Loading x0 will be fast but x1 will be slow.
101
+ # Then we load cos = COS[0, 0, 1, 1, ...] and sin = SIN[0, 0, 1, 1, ...].
102
+ # Then we do the calculation and use tl.where to pick put the right outputs for the even
103
+ # and for the odd indices.
104
+ rk_swap = rk + ((rk + 1) % 2) * 2 - 1 # 1, 0, 3, 2, 5, 4, ...
105
+ rk_repeat = tl.arange(0, BLOCK_K) // 2
106
+ X0 = X + (rm[:, None] * stride_x_seqlen + rk[None, :] * stride_x_headdim)
107
+ X1 = X + (rm[:, None] * stride_x_seqlen + rk_swap[None, :] * stride_x_headdim)
108
+ COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
109
+ SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
110
+ cos = tl.load(
111
+ COS,
112
+ mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
113
+ other=1.0,
114
+ ).to(tl.float32)
115
+ sin = tl.load(
116
+ SIN,
117
+ mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
118
+ other=0.0,
119
+ ).to(tl.float32)
120
+ x0 = tl.load(X0, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim), other=0.0).to(
121
+ tl.float32
122
+ )
123
+ x1 = tl.load(
124
+ X1, mask=(rm[:, None] < seqlen) & (rk_swap[None, :] < rotary_dim), other=0.0
125
+ ).to(tl.float32)
126
+ if CONJUGATE:
127
+ sin = -sin
128
+ x0_cos = x0 * cos
129
+ x1_sin = x1 * sin
130
+ out = tl.where(rk[None, :] % 2 == 0, x0_cos - x1_sin, x0_cos + x1_sin)
131
+ OUT = OUT + (rm[:, None] * stride_out_seqlen + rk[None, :] * stride_out_headdim)
132
+ tl.store(OUT, out, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim))
133
+
134
+
135
+ def apply_rotary(
136
+ x: torch.Tensor,
137
+ cos: torch.Tensor,
138
+ sin: torch.Tensor,
139
+ seqlen_offsets: Union[int, torch.Tensor] = 0,
140
+ cu_seqlens: Optional[torch.Tensor] = None,
141
+ max_seqlen: Optional[int] = None,
142
+ interleaved=False,
143
+ inplace=False,
144
+ conjugate=False,
145
+ ) -> torch.Tensor:
146
+ """
147
+ Arguments:
148
+ x: (batch, seqlen, nheads, headdim) if cu_seqlens is None
149
+ else (total_seqlen, nheads, headdim).
150
+ cos: (seqlen_ro, rotary_dim / 2)
151
+ sin: (seqlen_ro, rotary_dim / 2)
152
+ seqlen_offsets: integer or integer tensor of size (batch,)
153
+ cu_seqlens: (batch + 1,) or None
154
+ max_seqlen: int
155
+ Returns:
156
+ y: (batch, seqlen, nheads, headdim)
157
+ """
158
+
159
+ batch, nheads, seqlen, headdim = x.shape
160
+
161
+ batch_ro, seqlen_ro, rotary_dim = cos.shape
162
+
163
+ assert batch == batch_ro
164
+ assert sin.shape == cos.shape
165
+ rotary_dim *= 2
166
+ assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
167
+ assert headdim <= 256, "Only support headdim <= 256"
168
+
169
+ assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"
170
+
171
+ assert (
172
+ cos.dtype == sin.dtype
173
+ ), f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
174
+ assert (
175
+ x.dtype == cos.dtype
176
+ ), f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"
177
+
178
+ cos, sin = cos.contiguous(), sin.contiguous()
179
+ if isinstance(seqlen_offsets, torch.Tensor):
180
+ assert seqlen_offsets.shape == (batch,)
181
+ assert seqlen_offsets.dtype in [torch.int32, torch.int64]
182
+ seqlen_offsets = seqlen_offsets.contiguous()
183
+ else:
184
+ assert seqlen_offsets + seqlen <= seqlen_ro
185
+
186
+ output = torch.empty_like(x) if not inplace else x
187
+ if rotary_dim < headdim and not inplace:
188
+ output[..., rotary_dim:].copy_(x[..., rotary_dim:])
189
+
190
+ BLOCK_K = (
191
+ 32
192
+ if rotary_dim <= 32
193
+ else (64 if rotary_dim <= 64 else (128 if rotary_dim <= 128 else 256))
194
+ )
195
+ grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_M"]), batch, nheads) # noqa
196
+ BLOCK_M = 4 if interleaved else (8 if rotary_dim <= 64 else 4)
197
+
198
+ # Need this, otherwise Triton tries to launch from cuda:0 and we get
199
+ # ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
200
+ with torch.cuda.device(x.device.index):
201
+ rotary_kernel[grid](
202
+ output, # data ptrs
203
+ x,
204
+ cos,
205
+ sin,
206
+ cu_seqlens,
207
+ seqlen_offsets,
208
+ seqlen, # shapes
209
+ nheads,
210
+ rotary_dim,
211
+ seqlen_ro,
212
+ seqlen // 128, # key for triton cache (limit number of compilations)
213
+ output.stride(0), # batch_strides
214
+ output.stride(-3), # nheads_stride
215
+ output.stride(-2), # seqlen_stride
216
+ output.stride(-1), # headdim_stride
217
+ x.stride(0), # batch_strides
218
+ x.stride(-3), # nheads stride
219
+ x.stride(-2), # seqlen stride
220
+ x.stride(-1), # headdim stride
221
+ BLOCK_K,
222
+ isinstance(seqlen_offsets, torch.Tensor),
223
+ False,
224
+ interleaved,
225
+ conjugate,
226
+ BLOCK_M,
227
+ )
228
+ return output
229
+
230
+
231
+ class ApplyRotaryEmb(torch.autograd.Function):
232
+ @staticmethod
233
+ def forward(
234
+ ctx,
235
+ x,
236
+ cos,
237
+ sin,
238
+ interleaved=False,
239
+ inplace=False,
240
+ seqlen_offsets: Union[int, torch.Tensor] = 0,
241
+ cu_seqlens: Optional[torch.Tensor] = None,
242
+ max_seqlen: Optional[int] = None,
243
+ ):
244
+ out = apply_rotary(
245
+ x,
246
+ cos,
247
+ sin,
248
+ seqlen_offsets=seqlen_offsets,
249
+ cu_seqlens=cu_seqlens,
250
+ max_seqlen=max_seqlen,
251
+ interleaved=interleaved,
252
+ inplace=inplace,
253
+ )
254
+ if isinstance(seqlen_offsets, int):
255
+ ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
256
+ ctx.seqlen_offsets = seqlen_offsets
257
+ else:
258
+ ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
259
+ ctx.seqlen_offsets = None
260
+ ctx.interleaved = interleaved
261
+ ctx.inplace = inplace
262
+ ctx.max_seqlen = max_seqlen
263
+ return out if not inplace else x
264
+
265
+ @staticmethod
266
+ def backward(ctx, do):
267
+ seqlen_offsets = ctx.seqlen_offsets
268
+ if seqlen_offsets is None:
269
+ cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
270
+ else:
271
+ cos, sin, cu_seqlens = ctx.saved_tensors
272
+ # TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
273
+ # "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
274
+ if not ctx.interleaved and not ctx.inplace:
275
+ do = do.clone()
276
+ dx = apply_rotary(
277
+ do,
278
+ cos,
279
+ sin,
280
+ seqlen_offsets=seqlen_offsets,
281
+ cu_seqlens=cu_seqlens,
282
+ max_seqlen=ctx.max_seqlen,
283
+ interleaved=ctx.interleaved,
284
+ inplace=ctx.inplace,
285
+ conjugate=True,
286
+ )
287
+ return dx, None, None, None, None, None, None, None
288
+
289
+
290
+ def apply_rotary_emb(
291
+ x,
292
+ cos,
293
+ sin,
294
+ interleaved=False,
295
+ inplace=False,
296
+ seqlen_offsets: Union[int, torch.Tensor] = 0,
297
+ cu_seqlens: Optional[torch.Tensor] = None,
298
+ max_seqlen: Optional[int] = None,
299
+ ):
300
+ """
301
+ Arguments:
302
+ x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
303
+ else (total_seqlen, nheads, headdim)
304
+ cos, sin: (seqlen_rotary, rotary_dim / 2)
305
+ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
306
+ of 1st half and 2nd half (GPT-NeoX style).
307
+ inplace: if True, apply rotary embedding in-place.
308
+ seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
309
+ Most commonly used in inference when we have KV cache.
310
+ cu_seqlens: (batch + 1,) or None
311
+ max_seqlen: int
312
+ Return:
313
+ out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
314
+ else (total_seqlen, nheads, headdim)
315
+ rotary_dim must be <= headdim
316
+ Apply rotary embedding to the first rotary_dim of x.
317
+ """
318
+ return ApplyRotaryEmb.apply(
319
+ x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
320
+ )
321
+
322
+
323
+ # For backward compatibility
324
+ apply_rotary_emb_func = apply_rotary_emb
325
+
326
+
327
+ class FastRotaryEmbedding(torch.nn.Module):
328
+ """
329
+ The rotary position embeddings from RoFormer_ (Su et. al).
330
+ A crucial insight from the method is that the query and keys are
331
+ transformed by rotation matrices which depend on the relative positions.
332
+
333
+ Other implementations are available in the Rotary Transformer repo_ and in
334
+ GPT-NeoX_, GPT-NeoX was an inspiration
335
+
336
+ .. _RoFormer: https://arxiv.org/abs/2104.09864
337
+ .. _repo: https://github.com/ZhuiyiTechnology/roformer
338
+ .. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
339
+
340
+ If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
341
+ A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
342
+ Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
343
+ """
344
+
345
+ def __init__(
346
+ self,
347
+ dim: int,
348
+ base=10000,
349
+ interleaved=False,
350
+ scale_base=None,
351
+ pos_idx_in_fp32=True,
352
+ device=None,
353
+ ):
354
+ """
355
+ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
356
+ of 1st half and 2nd half (GPT-NeoX style).
357
+ pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
358
+ otherwise they might be in lower precision.
359
+ This option was added because previously (before 2023-07-02), when we construct
360
+ the position indices, we use the dtype of self.inv_freq. In most cases this would
361
+ be fp32, but if the model is trained in pure bf16 (not mixed precision), then
362
+ self.inv_freq would be bf16, and the position indices are also in bf16.
363
+ Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
364
+ embeddings for some positions will coincide.
365
+ To maintain compatibility with models previously trained in pure bf16,
366
+ we add this option.
367
+ """
368
+ super().__init__()
369
+ self.dim = dim
370
+ self.base = base
371
+ self.pos_idx_in_fp32 = pos_idx_in_fp32
372
+ # Generate and save the inverse frequency buffer (non trainable)
373
+ inv_freq = self._compute_inv_freq(device)
374
+ self.register_buffer("inv_freq", inv_freq)
375
+ self.interleaved = interleaved
376
+ self.scale_base = scale_base
377
+ scale = (
378
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
379
+ if scale_base is not None
380
+ else None
381
+ )
382
+ self.register_buffer("scale", scale, persistent=False)
383
+
384
+ self._seq_len_cached = 0
385
+ self._cos_cached = None
386
+ self._sin_cached = None
387
+ self._cos_k_cached = None
388
+ self._sin_k_cached = None
389
+ self.cos = None
390
+ self.sin = None
391
+
392
+ def _compute_inv_freq(self, device=None):
393
+ return 1.0 / (
394
+ self.base
395
+ ** (torch.arange(0, self.dim, 2, device=device) / self.dim)
396
+ # ** (torch.arange(0, self.dim, 2, device=device).float() / self.dim)
397
+ )
398
+
399
+ def _update_cos_sin_cache(self, seqlen, position_id, device=None, dtype=None):
400
+
401
+ if (
402
+ seqlen > self._seq_len_cached
403
+ ):
404
+ self._seq_len_cached = seqlen
405
+ # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
406
+ # And the output of arange can be quite large, so bf16 would lose a lot of precision.
407
+ # However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
408
+ if self.pos_idx_in_fp32:
409
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
410
+ # We want fp32 here as well since inv_freq will be multiplied with t, and the output
411
+ # will be large. Having it in bf16 will lose a lot of precision and cause the
412
+ # cos & sin output to change significantly.
413
+ # We want to recompute self.inv_freq if it was not loaded in fp32
414
+ if self.inv_freq.dtype != torch.float32:
415
+ inv_freq = self._compute_inv_freq(device=device)
416
+ else:
417
+ inv_freq = self.inv_freq
418
+ else:
419
+ t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
420
+ inv_freq = self.inv_freq
421
+ freqs = torch.einsum("i,j->ij", t, inv_freq)
422
+ if self.scale is None:
423
+ self._cos_cached = torch.cos(freqs).to(dtype)
424
+ self._sin_cached = torch.sin(freqs).to(dtype)
425
+
426
+ else:
427
+ power = (
428
+ torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
429
+ - seqlen // 2
430
+ ) / self.scale_base
431
+ scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
432
+ # We want the multiplication by scale to happen in fp32
433
+ self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
434
+ self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
435
+ self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
436
+ self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
437
+
438
+ def forward(
439
+ self,
440
+ q: torch.Tensor,
441
+ k: torch.Tensor,
442
+ position_ids: torch.Tensor,
443
+ max_seqlen,
444
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
445
+ """
446
+ q: (batch, nheads, seqlen, headdim)
447
+ k: (batch, nheads, seqlen, headdim)
448
+ position_id: (batch, seqlen)
449
+ max_seqlen: int
450
+ layer_id: int
451
+ only if layer_id == 0, then update cons and sin
452
+ Apply rotary embedding *inplace* to q k.
453
+ """
454
+
455
+ self._update_cos_sin_cache(max_seqlen, position_ids, device=q.device, dtype=q.dtype)
456
+ cos, sin = F.embedding(position_ids, self._cos_cached), F.embedding(position_ids, self._sin_cached)
457
+
458
+ q = apply_rotary_emb_func(
459
+ q,
460
+ cos,
461
+ sin,
462
+ interleaved=self.interleaved,
463
+ inplace=True
464
+ )
465
+ k = apply_rotary_emb_func(
466
+ k,
467
+ cos,
468
+ sin,
469
+ interleaved=self.interleaved,
470
+ inplace=True
471
+ )
472
+ return q, k
visual.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from argparse import Namespace
4
+ import torch.nn.functional as F
5
+ from transformers.activations import ACT2FN
6
+ import math
7
+
8
+ def standard_attention(query_layer, key_layer, value_layer, scaling_attention_score=True):
9
+ if scaling_attention_score:
10
+ query_layer = query_layer / math.sqrt(query_layer.shape[-1])
11
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
12
+
13
+ attention_probs = F.softmax(attention_scores, dim=-1)
14
+
15
+ context_layer = torch.matmul(attention_probs, value_layer)
16
+ return context_layer
17
+
18
+ def attention_fn_default(query_layer, key_layer, value_layer, scaling_attention_score=True):
19
+ # expand head dim to query dim, if necessary
20
+ # only useful for multi-query attention
21
+ batch_size, num_query_heads = query_layer.shape[:2] # [b, np, s, hn]
22
+ num_kv_heads = key_layer.shape[1] # [b, np, s, hn]
23
+ key_layer = key_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *key_layer.shape[2:])
24
+ value_layer = value_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *value_layer.shape[2:])
25
+
26
+ if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score:
27
+ # Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
28
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
29
+ query_layer, key_layer, value_layer,
30
+ attn_mask=None,
31
+ dropout_p=0.,
32
+ is_causal=False
33
+ )
34
+ return attn_output
35
+ else:
36
+ return standard_attention(
37
+ query_layer, key_layer, value_layer, scaling_attention_score=scaling_attention_score
38
+ )
39
+
40
+ class PatchEmbedding(nn.Module):
41
+ def __init__(self, config):
42
+ super().__init__()
43
+ self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
44
+ self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
45
+ self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
46
+
47
+ def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
48
+ x = self.proj(images)
49
+ x = x.flatten(2).transpose(1, 2)
50
+ cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
51
+ x = torch.cat((cls_token, x), dim=1)
52
+ x += self.position_embedding.weight.unsqueeze(0)
53
+ return x
54
+
55
+
56
+ class Attention(nn.Module):
57
+ def __init__(self, config):
58
+ super().__init__()
59
+ self.num_heads = config.num_heads
60
+ head_dim = config.hidden_size // config.num_heads
61
+ self.scale = head_dim ** -0.5
62
+ self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
63
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
64
+ self.output_dropout = torch.nn.Dropout(config.dropout_prob)
65
+
66
+ def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
67
+ B, L, _ = x.shape
68
+ qkv = self.query_key_value(x)
69
+ qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, H, L, D
70
+ q, k, v = qkv[0], qkv[1], qkv[2]
71
+
72
+ out = attention_fn_default(
73
+ q, k, v
74
+ ) # 24 x 3 x
75
+ out = out.transpose(2, 1)
76
+ # breakpoint()
77
+ # output = self.dense(out.reshape(B, L, -1))
78
+ output = self.dense(out.view(B, L, -1))
79
+ output = self.output_dropout(output)
80
+ return output
81
+
82
+ def attention(self, q, k, v):
83
+ attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
84
+ attn_weights = attn_weights.softmax(dim=-1)
85
+ output = torch.matmul(attn_weights, v)
86
+ return output
87
+
88
+
89
+ class MLP(nn.Module):
90
+ def __init__(self, config):
91
+ super().__init__()
92
+ self.config = config
93
+ self.activation_fn = ACT2FN[config.hidden_act]
94
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
95
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
96
+
97
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
98
+ x = self.fc1(x)
99
+ x = self.activation_fn(x)
100
+ x = self.fc2(x)
101
+ return x
102
+
103
+
104
+ class TransformerLayer(nn.Module):
105
+ def __init__(self, config):
106
+ super().__init__()
107
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
108
+ self.attention = Attention(config)
109
+ self.mlp = MLP(config)
110
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
111
+
112
+ def forward(self, hidden_states):
113
+ attention_input = hidden_states
114
+ attention_output = self.input_layernorm(self.attention(attention_input))
115
+ hidden_states = attention_input + attention_output
116
+ mlp_input = hidden_states
117
+ mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
118
+ output = mlp_input + mlp_output
119
+ return output
120
+
121
+
122
+ class Transformer(nn.Module):
123
+ def __init__(self, config):
124
+ super().__init__()
125
+ self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
126
+
127
+ def forward(self, hidden_states):
128
+ for layer_module in self.layers:
129
+ hidden_states = layer_module(hidden_states)
130
+ return hidden_states
131
+
132
+
133
+ class GLU(nn.Module):
134
+ def __init__(self, config, in_features):
135
+ super().__init__()
136
+ self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
137
+ self.norm1 = nn.LayerNorm(config.hidden_size)
138
+ self.act1 = nn.GELU()
139
+ self.act2 = nn.functional.silu
140
+ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
141
+ self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
142
+ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
143
+
144
+ def forward(self, x):
145
+ x = self.linear_proj(x)
146
+ x = self.act1(self.norm1(x))
147
+ x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
148
+ x = self.dense_4h_to_h(x)
149
+ return x
150
+
151
+
152
+ class EVA2CLIPModel(nn.Module):
153
+ def __init__(self, config):
154
+ super().__init__()
155
+ vision_config = Namespace(**config.vision_config)
156
+ self.patch_embedding = PatchEmbedding(vision_config)
157
+ self.transformer = Transformer(vision_config)
158
+ self.linear_proj = GLU(config, in_features=vision_config.hidden_size)
159
+ self.conv = nn.Conv2d(in_channels=vision_config.hidden_size, out_channels=vision_config.hidden_size, kernel_size=2, stride=2)
160
+ self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
161
+ self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
162
+
163
+ def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
164
+ x = self.patch_embedding(images)
165
+ x = self.transformer(x)
166
+ x = x[:, 1:]
167
+ b, s, h = x.shape
168
+ grid_size = int(s**0.5)
169
+ x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2)
170
+ x = self.conv(x)
171
+
172
+ x = x.flatten(2).transpose(1, 2)
173
+ x = self.linear_proj(x)
174
+ boi = self.boi.expand(x.shape[0], -1, -1)
175
+ eoi = self.eoi.expand(x.shape[0], -1, -1)
176
+ x = torch.cat((boi, x, eoi), dim=1)
177
+ return x