Upload video inference code
Browse files- README.md +24 -0
- config.json +40 -0
- configuration copy.json +1 -0
- configuration.json +1 -0
- configuration_cogvlm.py +46 -0
- generation_config.json +11 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +0 -0
- model_config.py +46 -0
- modeling_cogvlm.py +840 -0
- special_tokens_map.json +4 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2064 -0
- util.py +472 -0
- visual.py +177 -0
README.md
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: cogvlm2
|
4 |
+
license_link: https://huggingface.co/THUDM/cogvlm2-video-llama3-chat/blob/main/LICENSE
|
5 |
+
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
tags:
|
10 |
+
- chat
|
11 |
+
- cogvlm2
|
12 |
+
- cogvlm--video
|
13 |
+
|
14 |
+
inference: false
|
15 |
+
---
|
16 |
+
|
17 |
+
# VisionReward-Video
|
18 |
+
|
19 |
+
## Introduction
|
20 |
+
We present VisionReward, a general strategy to aligning visual generation models——both image and video generation——with human preferences through a fine-grainedand multi-dimensional framework. We decompose human preferences in images and videos into multiple dimensions,each represented by a series of judgment questions, linearly weighted and summed to an interpretable and accuratescore. To address the challenges of video quality assess-ment, we systematically analyze various dynamic features of videos, which helps VisionReward surpass VideoScore by 17.2% and achieve top performance for video preference prediction.
|
21 |
+
Here, we present the model of VisionReward-Video.
|
22 |
+
|
23 |
+
## Using this model
|
24 |
+
You can quickly install the Python package dependencies and run model inference in our [github](https://github.com/xujz18/VisionReward).
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CogVLMVideoForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_cogvlm.CogVLMConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_cogvlm.CogVLMVideoForCausalLM"
|
8 |
+
},
|
9 |
+
"bos_token_id": 128000,
|
10 |
+
"eos_token_id": 128001,
|
11 |
+
"pad_token_id": 128002,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 14336,
|
16 |
+
"max_position_embeddings": 2048,
|
17 |
+
"num_attention_heads": 32,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"num_multi_query_heads": 8,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"template_version": "base",
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.43.1",
|
25 |
+
"use_cache": true,
|
26 |
+
"vision_config": {
|
27 |
+
"dropout_prob": 0.0,
|
28 |
+
"hidden_act": "gelu",
|
29 |
+
"hidden_size": 1792,
|
30 |
+
"image_size": 224,
|
31 |
+
"in_channels": 3,
|
32 |
+
"intermediate_size": 15360,
|
33 |
+
"layer_norm_eps": 1e-06,
|
34 |
+
"num_heads": 16,
|
35 |
+
"num_hidden_layers": 63,
|
36 |
+
"num_positions": 257,
|
37 |
+
"patch_size": 14
|
38 |
+
},
|
39 |
+
"vocab_size": 128256
|
40 |
+
}
|
configuration copy.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework":"Pytorch","task":"video-question-answering"}
|
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"task":"image-text-to-text"}
|
configuration_cogvlm.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class CogVLMConfig(PretrainedConfig):
|
6 |
+
_auto_class = "AutoConfig"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=32000,
|
11 |
+
hidden_size=4096,
|
12 |
+
intermediate_size=11008,
|
13 |
+
num_hidden_layers=32,
|
14 |
+
num_attention_heads=32,
|
15 |
+
num_multi_query_heads=8,
|
16 |
+
hidden_act='silu',
|
17 |
+
max_position_embeddings=2048,
|
18 |
+
initializer_range=0.02,
|
19 |
+
rms_norm_eps=1e-06,
|
20 |
+
template_version: Literal["base", "chat"] = "chat",
|
21 |
+
pad_token_id=128002,
|
22 |
+
bos_token_id=128001,
|
23 |
+
eos_token_id=128002,
|
24 |
+
tie_word_embeddings=False,
|
25 |
+
use_cache=True,
|
26 |
+
**kwargs,
|
27 |
+
):
|
28 |
+
self.hidden_size = hidden_size
|
29 |
+
self.intermediate_size = intermediate_size
|
30 |
+
self.num_attention_heads = num_attention_heads
|
31 |
+
self.num_multi_query_heads = num_multi_query_heads
|
32 |
+
self.max_position_embeddings = max_position_embeddings
|
33 |
+
self.rms_norm_eps = rms_norm_eps
|
34 |
+
self.initializer_range = initializer_range
|
35 |
+
self.vocab_size = vocab_size
|
36 |
+
self.num_hidden_layers = num_hidden_layers
|
37 |
+
self.hidden_act = hidden_act
|
38 |
+
self.template_version = template_version
|
39 |
+
self.use_cache = use_cache
|
40 |
+
super().__init__(
|
41 |
+
pad_token_id=pad_token_id,
|
42 |
+
bos_token_id=bos_token_id,
|
43 |
+
eos_token_id=eos_token_id,
|
44 |
+
tie_word_embeddings=tie_word_embeddings,
|
45 |
+
**kwargs,
|
46 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 128000,
|
3 |
+
"eos_token_id": 128001,
|
4 |
+
"pad_token_id": 128002,
|
5 |
+
"do_sample": true,
|
6 |
+
"temperature": 0.1,
|
7 |
+
"max_length": 2048,
|
8 |
+
"top_p": 0.1,
|
9 |
+
"top_k": 1,
|
10 |
+
"transformers_version": "4.43.1"
|
11 |
+
}
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:896bfc9489d64439c2d15b18c0fff6a1690bb46be6c05b0212a50139d099f1d5
|
3 |
+
size 4976699712
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df62f6ecdb7a83b7ceef3ffa90a7141ffbdb2fad58414a6ad6ae2a88c7d25fbf
|
3 |
+
size 4999803504
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b57aac55aad9c15b4963bf3099d4611672c2b26f96d746daf5bdba1467b81f9
|
3 |
+
size 4915917160
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1740571d80cdeba6051aa57145c2249c869e973280eaeb99931c9fd04c21ec48
|
3 |
+
size 4956242104
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbdbd6ba26ba40e29192f299ec7c4a8261a29a69ea208e7f03f0de623a56589d
|
3 |
+
size 4115863248
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fc7209216b9fe05cc041b706928bd52ea0b546cc1b179ff2be1742936f07f86
|
3 |
+
size 1050673280
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model_config.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class CogVLMConfig(PretrainedConfig):
|
6 |
+
_auto_class = "AutoConfig"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=32000,
|
11 |
+
hidden_size=4096,
|
12 |
+
intermediate_size=11008,
|
13 |
+
num_hidden_layers=32,
|
14 |
+
num_attention_heads=32,
|
15 |
+
num_multi_query_heads=8,
|
16 |
+
hidden_act='silu',
|
17 |
+
max_position_embeddings=2048,
|
18 |
+
initializer_range=0.02,
|
19 |
+
rms_norm_eps=1e-06,
|
20 |
+
template_version: Literal["base", "chat"] = "chat",
|
21 |
+
pad_token_id=0,
|
22 |
+
bos_token_id=1,
|
23 |
+
eos_token_id=2,
|
24 |
+
tie_word_embeddings=False,
|
25 |
+
use_cache=True,
|
26 |
+
**kwargs,
|
27 |
+
):
|
28 |
+
self.hidden_size = hidden_size
|
29 |
+
self.intermediate_size = intermediate_size
|
30 |
+
self.num_attention_heads = num_attention_heads
|
31 |
+
self.num_multi_query_heads = num_multi_query_heads
|
32 |
+
self.max_position_embeddings = max_position_embeddings
|
33 |
+
self.rms_norm_eps = rms_norm_eps
|
34 |
+
self.initializer_range = initializer_range
|
35 |
+
self.vocab_size = vocab_size
|
36 |
+
self.num_hidden_layers = num_hidden_layers
|
37 |
+
self.hidden_act = hidden_act
|
38 |
+
self.template_version = template_version
|
39 |
+
self.use_cache = use_cache
|
40 |
+
super().__init__(
|
41 |
+
pad_token_id=pad_token_id,
|
42 |
+
bos_token_id=bos_token_id,
|
43 |
+
eos_token_id=eos_token_id,
|
44 |
+
tie_word_embeddings=tie_word_embeddings,
|
45 |
+
**kwargs,
|
46 |
+
)
|
modeling_cogvlm.py
ADDED
@@ -0,0 +1,840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""largely copy from llama and adapt for cogvlm"""
|
2 |
+
import warnings
|
3 |
+
from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any
|
4 |
+
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import CrossEntropyLoss
|
9 |
+
from torchvision import transforms
|
10 |
+
from einops import rearrange
|
11 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer
|
12 |
+
from transformers.utils.logging import get_logger
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
15 |
+
from torchvision.transforms import Lambda
|
16 |
+
from torchvision.transforms._transforms_video import NormalizeVideo, CenterCropVideo
|
17 |
+
from pytorchvideo.transforms import ShortSideScale
|
18 |
+
from .configuration_cogvlm import CogVLMConfig
|
19 |
+
from .util import FastRotaryEmbedding
|
20 |
+
from .visual import EVA2CLIPModel
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from transformers.utils import ModelOutput
|
24 |
+
|
25 |
+
logger = get_logger(__name__)
|
26 |
+
|
27 |
+
LANGUAGE_TOKEN_TYPE = 0
|
28 |
+
VISION_TOKEN_TYPE = 1
|
29 |
+
|
30 |
+
|
31 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
32 |
+
def _make_causal_mask(
|
33 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Make causal mask used for bi-directional self-attention.
|
37 |
+
"""
|
38 |
+
bsz, tgt_len = input_ids_shape
|
39 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
40 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
41 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
42 |
+
mask = mask.to(dtype)
|
43 |
+
|
44 |
+
if past_key_values_length > 0:
|
45 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
46 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
47 |
+
|
48 |
+
|
49 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
50 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
51 |
+
"""
|
52 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
53 |
+
"""
|
54 |
+
bsz, src_len = mask.size()
|
55 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
56 |
+
|
57 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
58 |
+
|
59 |
+
inverted_mask = 1.0 - expanded_mask
|
60 |
+
|
61 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
62 |
+
|
63 |
+
|
64 |
+
class RMSNorm(nn.Module):
|
65 |
+
def __init__(self, hidden_size, eps=1e-5):
|
66 |
+
super().__init__()
|
67 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
68 |
+
self.variance_epsilon = eps
|
69 |
+
|
70 |
+
def forward(self, hidden_states):
|
71 |
+
input_dtype = hidden_states.dtype
|
72 |
+
hidden_states = hidden_states.to(torch.float32)
|
73 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
74 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
75 |
+
return (self.weight * hidden_states).to(input_dtype)
|
76 |
+
|
77 |
+
|
78 |
+
class MLP(nn.Module):
|
79 |
+
def __init__(self, config):
|
80 |
+
super().__init__()
|
81 |
+
self.hidden_size = config.hidden_size
|
82 |
+
self.intermediate_size = config.intermediate_size
|
83 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
84 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
85 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
86 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
90 |
+
return down_proj
|
91 |
+
|
92 |
+
|
93 |
+
def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]":
|
94 |
+
vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool)
|
95 |
+
vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (
|
96 |
+
token_type_ids[:, 1:] == VISION_TOKEN_TYPE)
|
97 |
+
language_token_mask = ~vision_token_mask
|
98 |
+
return vision_token_mask, language_token_mask
|
99 |
+
|
100 |
+
|
101 |
+
class VisionExpertMLP(nn.Module):
|
102 |
+
def __init__(self, config):
|
103 |
+
super().__init__()
|
104 |
+
self.language_mlp = MLP(config)
|
105 |
+
# self.vision_mlp = MLP(config)
|
106 |
+
|
107 |
+
def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"):
|
108 |
+
# output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
109 |
+
# vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
|
110 |
+
# output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask])
|
111 |
+
# output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask])
|
112 |
+
|
113 |
+
output = self.language_mlp(hidden_states)
|
114 |
+
return output
|
115 |
+
|
116 |
+
|
117 |
+
def attention_fn(
|
118 |
+
query_layer: "torch.tensor(B, H, L, HD)",
|
119 |
+
key_layer: "torch.tensor(B, H, L, HD)",
|
120 |
+
value_layer: "torch.tensor(B, H, L, HD)",
|
121 |
+
attention_mask: "torch.tensor(B, H, L, HD)",
|
122 |
+
*,
|
123 |
+
scaling_attention_score: bool = True,
|
124 |
+
attention_dropout: nn.Module = None
|
125 |
+
):
|
126 |
+
attention_mask_bool = (attention_mask == 0)
|
127 |
+
is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all()
|
128 |
+
is_full = (attention_mask_bool > 0).all()
|
129 |
+
if not (int(torch.__version__.split('.')[0]) >= 2):
|
130 |
+
warnings.warn("It's recommended to use torch2.0 or higher.")
|
131 |
+
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle):
|
132 |
+
dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
|
133 |
+
return torch.nn.functional.scaled_dot_product_attention(
|
134 |
+
query_layer, key_layer, value_layer,
|
135 |
+
attn_mask=None,
|
136 |
+
dropout_p=dropout_p,
|
137 |
+
is_causal=not is_full
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
if scaling_attention_score:
|
141 |
+
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
|
142 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
143 |
+
attention_scores = attention_scores + attention_mask
|
144 |
+
attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype)
|
145 |
+
if attention_dropout is not None:
|
146 |
+
attention_scores = attention_dropout(attention_scores)
|
147 |
+
context_layer = torch.matmul(attention_scores, value_layer)
|
148 |
+
return context_layer
|
149 |
+
|
150 |
+
|
151 |
+
class VisionExpertAttention(nn.Module):
|
152 |
+
def __init__(self, config):
|
153 |
+
super().__init__()
|
154 |
+
self.config = config
|
155 |
+
self.hidden_size = config.hidden_size
|
156 |
+
self.num_attention_heads = config.num_attention_heads
|
157 |
+
self.num_multi_query_heads = config.num_multi_query_heads
|
158 |
+
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
159 |
+
self.stride = [self.num_attention_heads, self.num_multi_query_heads, self.num_multi_query_heads]
|
160 |
+
self.qkv_size = self.hidden_size + self.hidden_size_per_attention_head * self.num_multi_query_heads * 2
|
161 |
+
self.head_dim = self.hidden_size // self.num_attention_heads
|
162 |
+
self.max_position_embeddings = config.max_position_embeddings
|
163 |
+
self.rotary_emb = FastRotaryEmbedding(dim=self.head_dim, pos_idx_in_fp32=False, base=500000)
|
164 |
+
# self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=True)
|
165 |
+
# self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
166 |
+
self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=False)
|
167 |
+
self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
168 |
+
|
169 |
+
def _transpose_for_scores(self, tensor):
|
170 |
+
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
|
171 |
+
new_tensor_shape = tensor.size()[:-1] + \
|
172 |
+
(-1, # flexible for multi-query
|
173 |
+
self.hidden_size_per_attention_head)
|
174 |
+
tensor = tensor.view(*new_tensor_shape)
|
175 |
+
return tensor.permute(0, 2, 1, 3)
|
176 |
+
|
177 |
+
def forward(
|
178 |
+
self,
|
179 |
+
hidden_states: torch.Tensor,
|
180 |
+
token_type_ids: torch.LongTensor,
|
181 |
+
position_ids: torch.LongTensor,
|
182 |
+
attention_mask: Optional[torch.Tensor] = None,
|
183 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
184 |
+
output_attentions: bool = False,
|
185 |
+
use_cache: bool = False,
|
186 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
187 |
+
bsz, q_len, _ = hidden_states.size()
|
188 |
+
# vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
|
189 |
+
|
190 |
+
shape = list(hidden_states.shape)
|
191 |
+
shape[-1] = self.qkv_size
|
192 |
+
# mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
193 |
+
# mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask])
|
194 |
+
# mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask])
|
195 |
+
mixed_raw_layer = self.language_expert_query_key_value(hidden_states)
|
196 |
+
|
197 |
+
# query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1)
|
198 |
+
factor = mixed_raw_layer.size()[-1] // sum(self.stride)
|
199 |
+
query_states, key_states, value_states = torch.split(mixed_raw_layer, [factor * x for x in self.stride], dim=-1)
|
200 |
+
|
201 |
+
query_states = self._transpose_for_scores(query_states) # B, H, L, HD
|
202 |
+
key_states = self._transpose_for_scores(key_states) # B, H, L, HD
|
203 |
+
value_states = self._transpose_for_scores(value_states) # B, H, L, HD
|
204 |
+
|
205 |
+
kv_seq_len = key_states.shape[-2]
|
206 |
+
if past_key_value is not None:
|
207 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
208 |
+
|
209 |
+
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids=position_ids,
|
210 |
+
max_seqlen=position_ids.max() + 1)
|
211 |
+
|
212 |
+
if past_key_value is not None:
|
213 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
214 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
215 |
+
|
216 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
217 |
+
|
218 |
+
key_states = key_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads, -1,
|
219 |
+
-1).contiguous().view(
|
220 |
+
bsz, self.num_attention_heads, *key_states.shape[2:])
|
221 |
+
value_states = value_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads,
|
222 |
+
-1,
|
223 |
+
-1).contiguous().view(bsz, self.num_attention_heads,
|
224 |
+
*value_states.shape[2:])
|
225 |
+
|
226 |
+
context_layer = attention_fn(
|
227 |
+
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
|
228 |
+
scaling_attention_score=True, attention_dropout=None)
|
229 |
+
if context_layer.size() != (bsz, self.num_attention_heads, q_len, self.head_dim):
|
230 |
+
raise ValueError(
|
231 |
+
f"`attn_output` should be of size {(bsz, self.num_attention_heads, q_len, self.head_dim)}, but is"
|
232 |
+
f" {context_layer.size()}"
|
233 |
+
)
|
234 |
+
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size)
|
235 |
+
|
236 |
+
# attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
237 |
+
# attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask])
|
238 |
+
# attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask])
|
239 |
+
|
240 |
+
attn_output = self.language_expert_dense(context_layer)
|
241 |
+
|
242 |
+
if output_attentions:
|
243 |
+
warnings.warn("output_attentions is not implemented.")
|
244 |
+
|
245 |
+
return attn_output, None, past_key_value
|
246 |
+
|
247 |
+
|
248 |
+
class CogVLMDecoderLayer(nn.Module):
|
249 |
+
def __init__(self, config):
|
250 |
+
super().__init__()
|
251 |
+
self.hidden_size = config.hidden_size
|
252 |
+
self.self_attn = VisionExpertAttention(config=config)
|
253 |
+
self.mlp = VisionExpertMLP(config)
|
254 |
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
255 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
256 |
+
|
257 |
+
def forward(
|
258 |
+
self,
|
259 |
+
hidden_states: torch.Tensor,
|
260 |
+
token_type_ids: torch.LongTensor,
|
261 |
+
position_ids: torch.LongTensor,
|
262 |
+
attention_mask: Optional[torch.Tensor] = None,
|
263 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
264 |
+
output_attentions: Optional[bool] = False,
|
265 |
+
use_cache: Optional[bool] = False,
|
266 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
267 |
+
residual = hidden_states
|
268 |
+
|
269 |
+
hidden_states = self.input_layernorm(hidden_states)
|
270 |
+
|
271 |
+
# Self Attention
|
272 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
273 |
+
hidden_states=hidden_states,
|
274 |
+
token_type_ids=token_type_ids,
|
275 |
+
position_ids=position_ids,
|
276 |
+
attention_mask=attention_mask,
|
277 |
+
past_key_value=past_key_value,
|
278 |
+
output_attentions=output_attentions,
|
279 |
+
use_cache=use_cache,
|
280 |
+
)
|
281 |
+
hidden_states = residual + hidden_states
|
282 |
+
|
283 |
+
# Fully Connected
|
284 |
+
residual = hidden_states
|
285 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
286 |
+
hidden_states = self.mlp(hidden_states, token_type_ids=token_type_ids)
|
287 |
+
hidden_states = residual + hidden_states
|
288 |
+
|
289 |
+
outputs = (hidden_states,)
|
290 |
+
|
291 |
+
if output_attentions:
|
292 |
+
outputs += (self_attn_weights,)
|
293 |
+
|
294 |
+
if use_cache:
|
295 |
+
outputs += (present_key_value,)
|
296 |
+
|
297 |
+
return outputs # type: ignore
|
298 |
+
|
299 |
+
|
300 |
+
class CogVLMPreTrainedModel(PreTrainedModel):
|
301 |
+
config_class = CogVLMConfig
|
302 |
+
base_model_prefix = "model"
|
303 |
+
supports_gradient_checkpointing = False
|
304 |
+
_no_split_modules = ["CogVLMDecoderLayer"]
|
305 |
+
_skip_keys_device_placement = "past_key_values"
|
306 |
+
|
307 |
+
def _init_weights(self, module):
|
308 |
+
std = self.config.initializer_range
|
309 |
+
if isinstance(module, nn.Linear):
|
310 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
311 |
+
if module.bias is not None:
|
312 |
+
module.bias.data.zero_()
|
313 |
+
elif isinstance(module, nn.Embedding):
|
314 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
315 |
+
if module.padding_idx is not None:
|
316 |
+
module.weight.data[module.padding_idx].zero_()
|
317 |
+
|
318 |
+
|
319 |
+
def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
|
320 |
+
if images_list is None or len(images_list) == 0:
|
321 |
+
return True
|
322 |
+
for image_list in images_list:
|
323 |
+
if len(image_list):
|
324 |
+
return False
|
325 |
+
return True
|
326 |
+
|
327 |
+
|
328 |
+
def build_position_ids(x: "torch.BoolTensor(B, L)",
|
329 |
+
attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)":
|
330 |
+
if attention_mask is not None:
|
331 |
+
tmp = x.clone()
|
332 |
+
tmp[~(attention_mask.bool())] = -1
|
333 |
+
else:
|
334 |
+
tmp = x.clone()
|
335 |
+
# image boi eoi token as LANGUAGE_TOKEN_TYPE
|
336 |
+
is_boi_eoi = torch.zeros_like(x, dtype=torch.bool)
|
337 |
+
is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)
|
338 |
+
is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE)
|
339 |
+
is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE)
|
340 |
+
is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE)
|
341 |
+
tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE
|
342 |
+
# final position ids
|
343 |
+
y = torch.zeros_like(x, dtype=torch.long)
|
344 |
+
y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | (
|
345 |
+
(tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE))
|
346 |
+
y = y.cumsum(dim=-1)
|
347 |
+
return y
|
348 |
+
|
349 |
+
|
350 |
+
class CogVLMVideoModel(CogVLMPreTrainedModel):
|
351 |
+
def __init__(self, config):
|
352 |
+
super().__init__(config)
|
353 |
+
self.padding_idx = 128002
|
354 |
+
self.vocab_size = config.vocab_size
|
355 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
356 |
+
self.layers = nn.ModuleList([CogVLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
357 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
358 |
+
|
359 |
+
self.vision = EVA2CLIPModel(config)
|
360 |
+
|
361 |
+
self.gradient_checkpointing = False
|
362 |
+
# Initialize weights and apply final processing
|
363 |
+
self.post_init()
|
364 |
+
|
365 |
+
def encode_images(self, images: List[List[torch.Tensor]], ) -> torch.Tensor:
|
366 |
+
images_list, images = images, []
|
367 |
+
|
368 |
+
images = []
|
369 |
+
for image_list in images_list:
|
370 |
+
for image in image_list:
|
371 |
+
images.append(image)
|
372 |
+
|
373 |
+
# images = torch.stack(images) # video images is already stacked
|
374 |
+
images_features = self.vision(images[0])
|
375 |
+
return images_features
|
376 |
+
|
377 |
+
def forward(
|
378 |
+
self,
|
379 |
+
input_ids: torch.LongTensor = None,
|
380 |
+
images: List[List[torch.Tensor]] = None,
|
381 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
382 |
+
attention_mask: Optional[torch.Tensor] = None,
|
383 |
+
position_ids: Optional[torch.LongTensor] = None,
|
384 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
385 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
386 |
+
use_cache: Optional[bool] = None,
|
387 |
+
output_attentions: Optional[bool] = None,
|
388 |
+
output_hidden_states: Optional[bool] = None,
|
389 |
+
return_dict: Optional[bool] = None,
|
390 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
391 |
+
"""take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
|
392 |
+
|
393 |
+
if past_key_values is not None:
|
394 |
+
pass # generate mode with past_key_values. the image features are already mapped
|
395 |
+
else:
|
396 |
+
# not allow for inputs_embeds, because we want to process image feature
|
397 |
+
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
398 |
+
if not is_empty(images): # multi-modality
|
399 |
+
assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!"
|
400 |
+
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
|
401 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
402 |
+
images_features = self.encode_images(images)
|
403 |
+
images_features = rearrange(images_features, 'b n d -> (b n) d')
|
404 |
+
images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
405 |
+
inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features)
|
406 |
+
else: # single-modality
|
407 |
+
if token_type_ids is None:
|
408 |
+
token_type_ids = torch.ones_like(input_ids, dtype=torch.long,
|
409 |
+
device=input_ids.device) * LANGUAGE_TOKEN_TYPE
|
410 |
+
assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}"
|
411 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
412 |
+
|
413 |
+
if position_ids is None:
|
414 |
+
position_ids = build_position_ids(token_type_ids, attention_mask)
|
415 |
+
input_ids = None
|
416 |
+
return self.llm_forward(
|
417 |
+
input_ids=input_ids,
|
418 |
+
token_type_ids=token_type_ids,
|
419 |
+
attention_mask=attention_mask,
|
420 |
+
position_ids=position_ids,
|
421 |
+
past_key_values=past_key_values,
|
422 |
+
inputs_embeds=inputs_embeds,
|
423 |
+
use_cache=use_cache,
|
424 |
+
output_attentions=output_attentions,
|
425 |
+
output_hidden_states=output_hidden_states,
|
426 |
+
return_dict=return_dict,
|
427 |
+
)
|
428 |
+
|
429 |
+
def llm_forward(
|
430 |
+
self,
|
431 |
+
input_ids: torch.LongTensor = None,
|
432 |
+
token_type_ids: torch.LongTensor = None,
|
433 |
+
attention_mask: Optional[torch.Tensor] = None,
|
434 |
+
position_ids: Optional[torch.LongTensor] = None,
|
435 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
436 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
437 |
+
use_cache: Optional[bool] = None,
|
438 |
+
output_attentions: Optional[bool] = None,
|
439 |
+
output_hidden_states: Optional[bool] = None,
|
440 |
+
return_dict: Optional[bool] = None,
|
441 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
442 |
+
"""largely copy from llama forward and adapt for cogvlm with `token_type_ids`"""
|
443 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
444 |
+
output_hidden_states = (
|
445 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
446 |
+
)
|
447 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
448 |
+
|
449 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
450 |
+
|
451 |
+
# retrieve input_ids and inputs_embeds
|
452 |
+
if input_ids is not None and inputs_embeds is not None:
|
453 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
454 |
+
elif input_ids is not None:
|
455 |
+
batch_size, seq_length = input_ids.shape
|
456 |
+
elif inputs_embeds is not None:
|
457 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
458 |
+
else:
|
459 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
460 |
+
|
461 |
+
seq_length_with_past = seq_length
|
462 |
+
past_key_values_length = 0
|
463 |
+
|
464 |
+
if past_key_values is not None:
|
465 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
466 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
467 |
+
|
468 |
+
if position_ids is None:
|
469 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
470 |
+
position_ids = torch.arange(
|
471 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
472 |
+
)
|
473 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
474 |
+
else:
|
475 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
476 |
+
|
477 |
+
if inputs_embeds is None:
|
478 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
479 |
+
# embed positions
|
480 |
+
if attention_mask is None:
|
481 |
+
attention_mask = torch.ones(
|
482 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
483 |
+
)
|
484 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
485 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
486 |
+
)
|
487 |
+
|
488 |
+
hidden_states = inputs_embeds
|
489 |
+
|
490 |
+
# decoder layers
|
491 |
+
all_hidden_states = () if output_hidden_states else None
|
492 |
+
all_self_attns = () if output_attentions else None
|
493 |
+
next_decoder_cache = () if use_cache else None
|
494 |
+
|
495 |
+
for idx, decoder_layer in enumerate(self.layers):
|
496 |
+
if output_hidden_states:
|
497 |
+
all_hidden_states += (hidden_states,)
|
498 |
+
|
499 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
500 |
+
layer_outputs = decoder_layer(
|
501 |
+
hidden_states,
|
502 |
+
token_type_ids=token_type_ids,
|
503 |
+
attention_mask=attention_mask,
|
504 |
+
position_ids=position_ids,
|
505 |
+
past_key_value=past_key_value,
|
506 |
+
output_attentions=output_attentions,
|
507 |
+
use_cache=use_cache,
|
508 |
+
)
|
509 |
+
hidden_states = layer_outputs[0]
|
510 |
+
|
511 |
+
if use_cache:
|
512 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
513 |
+
|
514 |
+
if output_attentions:
|
515 |
+
all_self_attns += (layer_outputs[1],)
|
516 |
+
|
517 |
+
hidden_states = self.norm(hidden_states)
|
518 |
+
|
519 |
+
# add hidden states from the last decoder layer
|
520 |
+
if output_hidden_states:
|
521 |
+
all_hidden_states += (hidden_states,)
|
522 |
+
|
523 |
+
next_cache = next_decoder_cache if use_cache else None
|
524 |
+
if not return_dict:
|
525 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
526 |
+
return BaseModelOutputWithPast(
|
527 |
+
last_hidden_state=hidden_states,
|
528 |
+
past_key_values=next_cache,
|
529 |
+
hidden_states=all_hidden_states,
|
530 |
+
attentions=all_self_attns,
|
531 |
+
)
|
532 |
+
|
533 |
+
def get_input_embeddings(self):
|
534 |
+
return self.embed_tokens
|
535 |
+
|
536 |
+
def set_input_embeddings(self, value):
|
537 |
+
self.embed_tokens = value
|
538 |
+
|
539 |
+
# noinspection PyMethodMayBeStatic
|
540 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
541 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
542 |
+
# create causal mask
|
543 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
544 |
+
combined_attention_mask = None
|
545 |
+
if input_shape[-1] > 1:
|
546 |
+
combined_attention_mask = _make_causal_mask(
|
547 |
+
input_shape,
|
548 |
+
inputs_embeds.dtype,
|
549 |
+
device=inputs_embeds.device,
|
550 |
+
past_key_values_length=past_key_values_length,
|
551 |
+
)
|
552 |
+
|
553 |
+
if attention_mask is not None:
|
554 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
555 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
556 |
+
inputs_embeds.device
|
557 |
+
)
|
558 |
+
combined_attention_mask = (
|
559 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
560 |
+
)
|
561 |
+
|
562 |
+
return combined_attention_mask
|
563 |
+
|
564 |
+
|
565 |
+
def _history_to_prompt(signal_type, history, query):
|
566 |
+
if signal_type == 'base':
|
567 |
+
return query
|
568 |
+
elif signal_type == 'vqa':
|
569 |
+
answer_format = 'Short answer:'
|
570 |
+
elif signal_type == 'chat':
|
571 |
+
answer_format = 'Answer:'
|
572 |
+
else:
|
573 |
+
assert False, f"Unknown signal type {signal_type}"
|
574 |
+
|
575 |
+
prompt = ''
|
576 |
+
for i, (old_query, response) in enumerate(history):
|
577 |
+
prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n"
|
578 |
+
prompt += 'Question: {} {}'.format(query, answer_format)
|
579 |
+
return prompt
|
580 |
+
|
581 |
+
|
582 |
+
class CogVLMVideoForCausalLM(CogVLMPreTrainedModel):
|
583 |
+
_auto_class = "AutoModelForCausalLM"
|
584 |
+
|
585 |
+
def __init__(self, config):
|
586 |
+
super().__init__(config)
|
587 |
+
self.model = CogVLMVideoModel(config)
|
588 |
+
self.vocab_size = config.vocab_size
|
589 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
590 |
+
self.video_downsample = 1 # TODO: change this to config
|
591 |
+
|
592 |
+
# Initialize weights and apply final processing
|
593 |
+
self.post_init()
|
594 |
+
|
595 |
+
def get_input_embeddings(self):
|
596 |
+
return self.model.embed_tokens
|
597 |
+
|
598 |
+
def set_input_embeddings(self, value):
|
599 |
+
self.model.embed_tokens = value
|
600 |
+
|
601 |
+
def get_output_embeddings(self):
|
602 |
+
return self.lm_head
|
603 |
+
|
604 |
+
def set_output_embeddings(self, new_embeddings):
|
605 |
+
self.lm_head = new_embeddings
|
606 |
+
|
607 |
+
def set_decoder(self, decoder):
|
608 |
+
self.model = decoder
|
609 |
+
|
610 |
+
def get_decoder(self):
|
611 |
+
return self.model
|
612 |
+
|
613 |
+
def forward(
|
614 |
+
self,
|
615 |
+
input_ids: torch.LongTensor = None,
|
616 |
+
images: List[List[torch.Tensor]] = None,
|
617 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
618 |
+
attention_mask: Optional[torch.Tensor] = None,
|
619 |
+
position_ids: Optional[torch.LongTensor] = None,
|
620 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
621 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
622 |
+
use_cache: Optional[bool] = None,
|
623 |
+
output_attentions: Optional[bool] = None,
|
624 |
+
output_hidden_states: Optional[bool] = None,
|
625 |
+
return_dict: Optional[bool] = None,
|
626 |
+
labels: Optional[torch.LongTensor] = None,
|
627 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
628 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
629 |
+
output_hidden_states = (
|
630 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
631 |
+
)
|
632 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
633 |
+
|
634 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
635 |
+
outputs = self.model(
|
636 |
+
input_ids=input_ids,
|
637 |
+
images=images,
|
638 |
+
token_type_ids=token_type_ids,
|
639 |
+
attention_mask=attention_mask,
|
640 |
+
position_ids=position_ids,
|
641 |
+
past_key_values=past_key_values,
|
642 |
+
inputs_embeds=inputs_embeds,
|
643 |
+
use_cache=use_cache,
|
644 |
+
output_attentions=output_attentions,
|
645 |
+
output_hidden_states=output_hidden_states,
|
646 |
+
return_dict=return_dict,
|
647 |
+
)
|
648 |
+
|
649 |
+
hidden_states = outputs[0]
|
650 |
+
logits = self.lm_head(hidden_states)
|
651 |
+
logits = logits.float()
|
652 |
+
|
653 |
+
loss = None
|
654 |
+
if labels is not None:
|
655 |
+
# Shift so that tokens < n predict n
|
656 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
657 |
+
shift_labels = labels[..., 1:].contiguous()
|
658 |
+
# Flatten the tokens
|
659 |
+
loss_fct = CrossEntropyLoss()
|
660 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
661 |
+
shift_labels = shift_labels.view(-1)
|
662 |
+
# Enable model parallelism
|
663 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
664 |
+
loss = loss_fct(shift_logits, shift_labels)
|
665 |
+
|
666 |
+
if not return_dict:
|
667 |
+
output = (logits,) + outputs[1:]
|
668 |
+
return (loss,) + output if loss is not None else output
|
669 |
+
|
670 |
+
return CausalLMOutputWithPast(
|
671 |
+
loss=loss,
|
672 |
+
logits=logits,
|
673 |
+
past_key_values=outputs.past_key_values,
|
674 |
+
hidden_states=outputs.hidden_states,
|
675 |
+
attentions=outputs.attentions,
|
676 |
+
)
|
677 |
+
|
678 |
+
def _prepare_attention_mask_for_generation(
|
679 |
+
self,
|
680 |
+
inputs: torch.Tensor,
|
681 |
+
pad_token_id: Optional[int],
|
682 |
+
eos_token_id: Optional[Union[int, List[int]]],
|
683 |
+
) -> torch.LongTensor:
|
684 |
+
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) # type: ignore
|
685 |
+
|
686 |
+
def prepare_inputs_for_generation(
|
687 |
+
self, input_ids, token_type_ids, images=None, past_key_values=None, attention_mask=None, inputs_embeds=None,
|
688 |
+
**kwargs
|
689 |
+
):
|
690 |
+
# build position_ids if needed
|
691 |
+
position_ids = kwargs.get("position_ids", None)
|
692 |
+
if position_ids is None:
|
693 |
+
position_ids = build_position_ids(token_type_ids, attention_mask)
|
694 |
+
|
695 |
+
if past_key_values:
|
696 |
+
input_ids = input_ids[:, -1:]
|
697 |
+
token_type_ids = token_type_ids[:, -1:]
|
698 |
+
position_ids = position_ids[:, -1:]
|
699 |
+
|
700 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
701 |
+
if inputs_embeds is not None and past_key_values is None:
|
702 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
703 |
+
else:
|
704 |
+
model_inputs = {"input_ids": input_ids}
|
705 |
+
|
706 |
+
model_inputs.update(
|
707 |
+
{
|
708 |
+
"token_type_ids": token_type_ids,
|
709 |
+
"images": images,
|
710 |
+
"position_ids": position_ids,
|
711 |
+
"past_key_values": past_key_values,
|
712 |
+
"use_cache": kwargs.get("use_cache"),
|
713 |
+
"attention_mask": attention_mask,
|
714 |
+
}
|
715 |
+
)
|
716 |
+
return model_inputs
|
717 |
+
|
718 |
+
def _update_model_kwargs_for_generation(
|
719 |
+
self,
|
720 |
+
outputs: "ModelOutput",
|
721 |
+
model_kwargs: Dict[str, Any],
|
722 |
+
is_encoder_decoder: bool = False,
|
723 |
+
standardize_cache_format: bool = False,
|
724 |
+
) -> Dict[str, Any]:
|
725 |
+
# update past_key_values
|
726 |
+
cache_name, cache = self._extract_past_from_model_output(
|
727 |
+
outputs, standardize_cache_format=standardize_cache_format
|
728 |
+
)
|
729 |
+
model_kwargs[cache_name] = cache
|
730 |
+
|
731 |
+
if getattr(outputs, "state", None) is not None:
|
732 |
+
model_kwargs["state"] = outputs.state
|
733 |
+
|
734 |
+
# update token_type_ids with last value
|
735 |
+
if "token_type_ids" in model_kwargs:
|
736 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
737 |
+
new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype,
|
738 |
+
device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE
|
739 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
|
740 |
+
|
741 |
+
if not is_encoder_decoder:
|
742 |
+
# update attention mask
|
743 |
+
if "attention_mask" in model_kwargs:
|
744 |
+
attention_mask = model_kwargs["attention_mask"]
|
745 |
+
model_kwargs["attention_mask"] = torch.cat(
|
746 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
747 |
+
)
|
748 |
+
else:
|
749 |
+
# update decoder attention mask
|
750 |
+
if "decoder_attention_mask" in model_kwargs:
|
751 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
752 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
753 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
|
754 |
+
dim=-1,
|
755 |
+
)
|
756 |
+
|
757 |
+
return model_kwargs
|
758 |
+
|
759 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
760 |
+
reordered_past = ()
|
761 |
+
for layer_past in past_key_values:
|
762 |
+
reordered_past += (
|
763 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
764 |
+
)
|
765 |
+
return reordered_past
|
766 |
+
|
767 |
+
def build_conversation_input_ids(
|
768 |
+
self,
|
769 |
+
tokenizer: "PreTrainedTokenizer",
|
770 |
+
*,
|
771 |
+
query: str,
|
772 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
773 |
+
images: Optional[List["PIL.Image"]] = None,
|
774 |
+
template_version: Optional[Literal["base", "chat", "vqa"]] = None,
|
775 |
+
answer: str = None,
|
776 |
+
):
|
777 |
+
image_size: int = self.config.vision_config['image_size']
|
778 |
+
template_version = template_version or self.config.template_version
|
779 |
+
assert images is None or len(images) <= 1, f"not support multi images by now."
|
780 |
+
history = history or []
|
781 |
+
text = _history_to_prompt(template_version, history, query)
|
782 |
+
input_ids = [tokenizer.bos_token_id]
|
783 |
+
token_type_ids = [LANGUAGE_TOKEN_TYPE]
|
784 |
+
add_time_indices = True if template_version == 'chat' else False
|
785 |
+
if images is not None and len(images) == 1:
|
786 |
+
# vision
|
787 |
+
transform = transforms.Compose(
|
788 |
+
[
|
789 |
+
# UniformTemporalSubsample(num_frames),
|
790 |
+
Lambda(lambda x: x / 255.0),
|
791 |
+
NormalizeVideo(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
|
792 |
+
ShortSideScale(size=image_size),
|
793 |
+
CenterCropVideo(image_size),
|
794 |
+
# RandomHorizontalFlipVideo(p=0.5),
|
795 |
+
]
|
796 |
+
)
|
797 |
+
images = [transform(images[0]).transpose(0, 1)] # (T, C, H, W)
|
798 |
+
num_eois = len(images[0])
|
799 |
+
tokenizer.pad_token_id = 128002
|
800 |
+
if not add_time_indices:
|
801 |
+
vision_token_num = (64 + 2) * num_eois
|
802 |
+
input_ids += [tokenizer.pad_token_id] * vision_token_num # add spetial token
|
803 |
+
token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
|
804 |
+
else:
|
805 |
+
video_ids, video_type_ids = [], []
|
806 |
+
sing_vision_token_num = (64 + 2)
|
807 |
+
for _time_idx in range(num_eois):
|
808 |
+
video_ids += [tokenizer.pad_token_id] * sing_vision_token_num
|
809 |
+
video_type_ids += [VISION_TOKEN_TYPE] * sing_vision_token_num
|
810 |
+
# add time indices
|
811 |
+
time_indices = tokenizer.encode(str(_time_idx), add_special_tokens=False)
|
812 |
+
video_ids += time_indices
|
813 |
+
video_type_ids += [LANGUAGE_TOKEN_TYPE] * len(time_indices)
|
814 |
+
# llama3 adapt for cogvlm
|
815 |
+
input_ids += video_ids
|
816 |
+
token_type_ids += video_type_ids
|
817 |
+
|
818 |
+
text_ids = tokenizer.encode(text, add_special_tokens=False)
|
819 |
+
|
820 |
+
if answer is not None:
|
821 |
+
answer_ids = tokenizer.encode(answer, add_special_tokens=False)
|
822 |
+
answer_ids += [tokenizer.eos_token_id]
|
823 |
+
text_ids += answer_ids
|
824 |
+
|
825 |
+
input_ids += text_ids
|
826 |
+
token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids)
|
827 |
+
attention_mask = [1] * len(input_ids)
|
828 |
+
if answer is not None:
|
829 |
+
labels = [-100 for _ in range(len(input_ids) - len(answer_ids))] + answer_ids
|
830 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
831 |
+
else:
|
832 |
+
labels = None
|
833 |
+
|
834 |
+
return {
|
835 |
+
'input_ids': torch.tensor(input_ids, dtype=torch.long),
|
836 |
+
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
837 |
+
'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
|
838 |
+
'images': images,
|
839 |
+
'labels': labels,
|
840 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|begin_of_text|>",
|
3 |
+
"eos_token": "<|end_of_text|>"
|
4 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2064 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|reserved_special_token_2|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_3|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|reserved_special_token_4|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|reserved_special_token_5|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_6|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_7|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_8|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_9|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_10|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_11|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_12|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_13|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_14|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_15|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_16|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_17|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_18|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_19|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_20|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_21|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_22|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_23|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_24|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_25|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_26|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_27|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_28|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_29|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_30|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_31|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_32|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_33|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_34|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_35|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_36|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_37|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_38|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_39|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_40|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_41|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_42|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_43|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_44|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_45|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_46|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_47|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_48|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_49|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_50|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_51|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_52|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_53|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_54|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_55|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_56|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_57|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_58|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_59|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_60|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_61|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_62|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_63|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_64|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_65|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_66|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_67|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_68|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_69|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_70|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_71|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_72|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_73|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_74|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_75|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_76|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_77|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_78|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_79|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_80|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_81|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_82|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_83|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_84|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_85|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_86|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_87|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_88|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_89|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_90|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_91|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_92|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_93|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_94|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_95|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_96|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_97|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_98|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_99|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_100|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_101|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_102|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_103|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_104|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_105|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_106|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_107|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_108|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_109|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_110|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_111|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_112|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_113|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_114|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_115|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_116|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_117|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_118|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_119|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_120|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_121|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_122|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_123|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_124|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_125|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_126|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_127|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_128|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_129|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_130|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_131|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_132|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_133|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_134|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_135|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_136|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_137|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_138|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_139|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_140|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_141|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_142|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_143|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_144|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_145|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_146|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_147|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_148|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_149|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_150|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_151|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_152|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_153|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_154|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_155|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_156|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_157|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_158|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_159|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_160|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_161|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_162|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_163|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_164|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_165|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_166|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_167|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_168|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_169|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_170|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_171|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_172|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_173|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_174|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_175|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_176|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_177|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_178|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_179|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_180|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_181|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_182|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_183|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_184|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_185|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_186|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_187|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_188|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_189|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_190|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_191|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_192|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_193|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_194|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_195|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_196|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_197|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_198|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_199|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_200|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_201|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_202|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_203|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_204|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_205|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_206|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_207|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_208|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_209|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_210|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_211|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_212|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_213|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_214|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_215|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_216|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_217|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_218|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_219|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_220|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_221|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_222|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_223|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_224|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_225|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_226|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_227|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_228|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_229|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_230|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_231|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_232|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_233|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_234|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_235|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_236|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_237|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_238|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_239|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_240|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_241|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_242|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_243|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_244|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_245|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_246|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_247|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_248|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_249|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_250|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% else %}{{ eos_token }}{% endif %}",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|end_of_text|>",
|
2056 |
+
"model_input_names": [
|
2057 |
+
"input_ids",
|
2058 |
+
"token_type_ids",
|
2059 |
+
"attention_mask",
|
2060 |
+
"images"
|
2061 |
+
],
|
2062 |
+
"model_max_length": 2048,
|
2063 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2064 |
+
}
|
util.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from einops import rearrange
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
|
11 |
+
@triton.jit
|
12 |
+
def rotary_kernel(
|
13 |
+
OUT,
|
14 |
+
X,
|
15 |
+
COS,
|
16 |
+
SIN,
|
17 |
+
CU_SEQLENS,
|
18 |
+
SEQLEN_OFFSETS,
|
19 |
+
seqlen,
|
20 |
+
nheads,
|
21 |
+
rotary_dim,
|
22 |
+
seqlen_ro,
|
23 |
+
CACHE_KEY_SEQLEN,
|
24 |
+
# strides
|
25 |
+
stride_out_batch,
|
26 |
+
stride_out_nheads,
|
27 |
+
stride_out_seqlen,
|
28 |
+
stride_out_headdim,
|
29 |
+
stride_x_batch,
|
30 |
+
stride_x_nheads,
|
31 |
+
stride_x_seqlen,
|
32 |
+
stride_x_headdim,
|
33 |
+
BLOCK_K: tl.constexpr,
|
34 |
+
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
|
35 |
+
IS_VARLEN: tl.constexpr,
|
36 |
+
INTERLEAVED: tl.constexpr,
|
37 |
+
CONJUGATE: tl.constexpr,
|
38 |
+
BLOCK_M: tl.constexpr,
|
39 |
+
):
|
40 |
+
pid_m = tl.program_id(axis=0)
|
41 |
+
pid_batch = tl.program_id(axis=1)
|
42 |
+
pid_head = tl.program_id(axis=2)
|
43 |
+
rotary_dim_half = rotary_dim // 2
|
44 |
+
|
45 |
+
if not IS_VARLEN:
|
46 |
+
X = X + pid_batch * stride_x_batch + pid_head * stride_x_nheads
|
47 |
+
OUT = OUT + pid_batch * stride_out_batch + pid_head * stride_out_nheads
|
48 |
+
COS = COS + pid_batch * seqlen_ro * rotary_dim_half
|
49 |
+
SIN = SIN + pid_batch * seqlen_ro * rotary_dim_half
|
50 |
+
else:
|
51 |
+
start_idx = tl.load(CU_SEQLENS + pid_batch)
|
52 |
+
seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx
|
53 |
+
X = X + start_idx * stride_x_seqlen + pid_head * stride_x_nheads
|
54 |
+
OUT = OUT + start_idx * stride_out_seqlen + pid_head * stride_out_nheads
|
55 |
+
|
56 |
+
if pid_m * BLOCK_M >= seqlen:
|
57 |
+
return
|
58 |
+
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
59 |
+
if not IS_SEQLEN_OFFSETS_TENSOR:
|
60 |
+
rm_cs = rm + SEQLEN_OFFSETS
|
61 |
+
else:
|
62 |
+
rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
|
63 |
+
rk = tl.arange(0, BLOCK_K)
|
64 |
+
rk_half = tl.arange(0, BLOCK_K // 2)
|
65 |
+
|
66 |
+
if not INTERLEAVED:
|
67 |
+
# Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT
|
68 |
+
X = X + (rm[:, None] * stride_x_seqlen + rk_half[None, :] * stride_x_headdim)
|
69 |
+
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
|
70 |
+
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
|
71 |
+
cos = tl.load(
|
72 |
+
COS, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=1.0
|
73 |
+
)
|
74 |
+
sin = tl.load(
|
75 |
+
SIN, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=0.0
|
76 |
+
)
|
77 |
+
x0 = tl.load(
|
78 |
+
X, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), other=0.0
|
79 |
+
)
|
80 |
+
x1 = tl.load(
|
81 |
+
X + rotary_dim_half * stride_x_headdim,
|
82 |
+
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
|
83 |
+
other=0.0,
|
84 |
+
)
|
85 |
+
if CONJUGATE:
|
86 |
+
sin = -sin
|
87 |
+
o0 = x0 * cos - x1 * sin
|
88 |
+
o1 = x0 * sin + x1 * cos
|
89 |
+
# write back result
|
90 |
+
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk_half[None, :] * stride_out_headdim)
|
91 |
+
tl.store(OUT, o0, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half))
|
92 |
+
tl.store(
|
93 |
+
OUT + rotary_dim_half * stride_out_headdim,
|
94 |
+
o1,
|
95 |
+
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
|
96 |
+
)
|
97 |
+
else:
|
98 |
+
# We don't want to load X[0, 2, 4, ...] and X[1, 3, 5, ...] separately since both are slow.
|
99 |
+
# Instead, we load x0 = X[0, 1, 2, 3, ...] and x1 = X[1, 0, 3, 2, ...].
|
100 |
+
# Loading x0 will be fast but x1 will be slow.
|
101 |
+
# Then we load cos = COS[0, 0, 1, 1, ...] and sin = SIN[0, 0, 1, 1, ...].
|
102 |
+
# Then we do the calculation and use tl.where to pick put the right outputs for the even
|
103 |
+
# and for the odd indices.
|
104 |
+
rk_swap = rk + ((rk + 1) % 2) * 2 - 1 # 1, 0, 3, 2, 5, 4, ...
|
105 |
+
rk_repeat = tl.arange(0, BLOCK_K) // 2
|
106 |
+
X0 = X + (rm[:, None] * stride_x_seqlen + rk[None, :] * stride_x_headdim)
|
107 |
+
X1 = X + (rm[:, None] * stride_x_seqlen + rk_swap[None, :] * stride_x_headdim)
|
108 |
+
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
|
109 |
+
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
|
110 |
+
cos = tl.load(
|
111 |
+
COS,
|
112 |
+
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
|
113 |
+
other=1.0,
|
114 |
+
).to(tl.float32)
|
115 |
+
sin = tl.load(
|
116 |
+
SIN,
|
117 |
+
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
|
118 |
+
other=0.0,
|
119 |
+
).to(tl.float32)
|
120 |
+
x0 = tl.load(X0, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim), other=0.0).to(
|
121 |
+
tl.float32
|
122 |
+
)
|
123 |
+
x1 = tl.load(
|
124 |
+
X1, mask=(rm[:, None] < seqlen) & (rk_swap[None, :] < rotary_dim), other=0.0
|
125 |
+
).to(tl.float32)
|
126 |
+
if CONJUGATE:
|
127 |
+
sin = -sin
|
128 |
+
x0_cos = x0 * cos
|
129 |
+
x1_sin = x1 * sin
|
130 |
+
out = tl.where(rk[None, :] % 2 == 0, x0_cos - x1_sin, x0_cos + x1_sin)
|
131 |
+
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk[None, :] * stride_out_headdim)
|
132 |
+
tl.store(OUT, out, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim))
|
133 |
+
|
134 |
+
|
135 |
+
def apply_rotary(
|
136 |
+
x: torch.Tensor,
|
137 |
+
cos: torch.Tensor,
|
138 |
+
sin: torch.Tensor,
|
139 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
140 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
141 |
+
max_seqlen: Optional[int] = None,
|
142 |
+
interleaved=False,
|
143 |
+
inplace=False,
|
144 |
+
conjugate=False,
|
145 |
+
) -> torch.Tensor:
|
146 |
+
"""
|
147 |
+
Arguments:
|
148 |
+
x: (batch, seqlen, nheads, headdim) if cu_seqlens is None
|
149 |
+
else (total_seqlen, nheads, headdim).
|
150 |
+
cos: (seqlen_ro, rotary_dim / 2)
|
151 |
+
sin: (seqlen_ro, rotary_dim / 2)
|
152 |
+
seqlen_offsets: integer or integer tensor of size (batch,)
|
153 |
+
cu_seqlens: (batch + 1,) or None
|
154 |
+
max_seqlen: int
|
155 |
+
Returns:
|
156 |
+
y: (batch, seqlen, nheads, headdim)
|
157 |
+
"""
|
158 |
+
|
159 |
+
batch, nheads, seqlen, headdim = x.shape
|
160 |
+
|
161 |
+
batch_ro, seqlen_ro, rotary_dim = cos.shape
|
162 |
+
|
163 |
+
assert batch == batch_ro
|
164 |
+
assert sin.shape == cos.shape
|
165 |
+
rotary_dim *= 2
|
166 |
+
assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
|
167 |
+
assert headdim <= 256, "Only support headdim <= 256"
|
168 |
+
|
169 |
+
assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"
|
170 |
+
|
171 |
+
assert (
|
172 |
+
cos.dtype == sin.dtype
|
173 |
+
), f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
|
174 |
+
assert (
|
175 |
+
x.dtype == cos.dtype
|
176 |
+
), f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"
|
177 |
+
|
178 |
+
cos, sin = cos.contiguous(), sin.contiguous()
|
179 |
+
if isinstance(seqlen_offsets, torch.Tensor):
|
180 |
+
assert seqlen_offsets.shape == (batch,)
|
181 |
+
assert seqlen_offsets.dtype in [torch.int32, torch.int64]
|
182 |
+
seqlen_offsets = seqlen_offsets.contiguous()
|
183 |
+
else:
|
184 |
+
assert seqlen_offsets + seqlen <= seqlen_ro
|
185 |
+
|
186 |
+
output = torch.empty_like(x) if not inplace else x
|
187 |
+
if rotary_dim < headdim and not inplace:
|
188 |
+
output[..., rotary_dim:].copy_(x[..., rotary_dim:])
|
189 |
+
|
190 |
+
BLOCK_K = (
|
191 |
+
32
|
192 |
+
if rotary_dim <= 32
|
193 |
+
else (64 if rotary_dim <= 64 else (128 if rotary_dim <= 128 else 256))
|
194 |
+
)
|
195 |
+
grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_M"]), batch, nheads) # noqa
|
196 |
+
BLOCK_M = 4 if interleaved else (8 if rotary_dim <= 64 else 4)
|
197 |
+
|
198 |
+
# Need this, otherwise Triton tries to launch from cuda:0 and we get
|
199 |
+
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
|
200 |
+
with torch.cuda.device(x.device.index):
|
201 |
+
rotary_kernel[grid](
|
202 |
+
output, # data ptrs
|
203 |
+
x,
|
204 |
+
cos,
|
205 |
+
sin,
|
206 |
+
cu_seqlens,
|
207 |
+
seqlen_offsets,
|
208 |
+
seqlen, # shapes
|
209 |
+
nheads,
|
210 |
+
rotary_dim,
|
211 |
+
seqlen_ro,
|
212 |
+
seqlen // 128, # key for triton cache (limit number of compilations)
|
213 |
+
output.stride(0), # batch_strides
|
214 |
+
output.stride(-3), # nheads_stride
|
215 |
+
output.stride(-2), # seqlen_stride
|
216 |
+
output.stride(-1), # headdim_stride
|
217 |
+
x.stride(0), # batch_strides
|
218 |
+
x.stride(-3), # nheads stride
|
219 |
+
x.stride(-2), # seqlen stride
|
220 |
+
x.stride(-1), # headdim stride
|
221 |
+
BLOCK_K,
|
222 |
+
isinstance(seqlen_offsets, torch.Tensor),
|
223 |
+
False,
|
224 |
+
interleaved,
|
225 |
+
conjugate,
|
226 |
+
BLOCK_M,
|
227 |
+
)
|
228 |
+
return output
|
229 |
+
|
230 |
+
|
231 |
+
class ApplyRotaryEmb(torch.autograd.Function):
|
232 |
+
@staticmethod
|
233 |
+
def forward(
|
234 |
+
ctx,
|
235 |
+
x,
|
236 |
+
cos,
|
237 |
+
sin,
|
238 |
+
interleaved=False,
|
239 |
+
inplace=False,
|
240 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
241 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
242 |
+
max_seqlen: Optional[int] = None,
|
243 |
+
):
|
244 |
+
out = apply_rotary(
|
245 |
+
x,
|
246 |
+
cos,
|
247 |
+
sin,
|
248 |
+
seqlen_offsets=seqlen_offsets,
|
249 |
+
cu_seqlens=cu_seqlens,
|
250 |
+
max_seqlen=max_seqlen,
|
251 |
+
interleaved=interleaved,
|
252 |
+
inplace=inplace,
|
253 |
+
)
|
254 |
+
if isinstance(seqlen_offsets, int):
|
255 |
+
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
256 |
+
ctx.seqlen_offsets = seqlen_offsets
|
257 |
+
else:
|
258 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
259 |
+
ctx.seqlen_offsets = None
|
260 |
+
ctx.interleaved = interleaved
|
261 |
+
ctx.inplace = inplace
|
262 |
+
ctx.max_seqlen = max_seqlen
|
263 |
+
return out if not inplace else x
|
264 |
+
|
265 |
+
@staticmethod
|
266 |
+
def backward(ctx, do):
|
267 |
+
seqlen_offsets = ctx.seqlen_offsets
|
268 |
+
if seqlen_offsets is None:
|
269 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
270 |
+
else:
|
271 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
272 |
+
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
|
273 |
+
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
|
274 |
+
if not ctx.interleaved and not ctx.inplace:
|
275 |
+
do = do.clone()
|
276 |
+
dx = apply_rotary(
|
277 |
+
do,
|
278 |
+
cos,
|
279 |
+
sin,
|
280 |
+
seqlen_offsets=seqlen_offsets,
|
281 |
+
cu_seqlens=cu_seqlens,
|
282 |
+
max_seqlen=ctx.max_seqlen,
|
283 |
+
interleaved=ctx.interleaved,
|
284 |
+
inplace=ctx.inplace,
|
285 |
+
conjugate=True,
|
286 |
+
)
|
287 |
+
return dx, None, None, None, None, None, None, None
|
288 |
+
|
289 |
+
|
290 |
+
def apply_rotary_emb(
|
291 |
+
x,
|
292 |
+
cos,
|
293 |
+
sin,
|
294 |
+
interleaved=False,
|
295 |
+
inplace=False,
|
296 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
297 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
298 |
+
max_seqlen: Optional[int] = None,
|
299 |
+
):
|
300 |
+
"""
|
301 |
+
Arguments:
|
302 |
+
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
303 |
+
else (total_seqlen, nheads, headdim)
|
304 |
+
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
305 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
306 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
307 |
+
inplace: if True, apply rotary embedding in-place.
|
308 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
309 |
+
Most commonly used in inference when we have KV cache.
|
310 |
+
cu_seqlens: (batch + 1,) or None
|
311 |
+
max_seqlen: int
|
312 |
+
Return:
|
313 |
+
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
314 |
+
else (total_seqlen, nheads, headdim)
|
315 |
+
rotary_dim must be <= headdim
|
316 |
+
Apply rotary embedding to the first rotary_dim of x.
|
317 |
+
"""
|
318 |
+
return ApplyRotaryEmb.apply(
|
319 |
+
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
|
320 |
+
)
|
321 |
+
|
322 |
+
|
323 |
+
# For backward compatibility
|
324 |
+
apply_rotary_emb_func = apply_rotary_emb
|
325 |
+
|
326 |
+
|
327 |
+
class FastRotaryEmbedding(torch.nn.Module):
|
328 |
+
"""
|
329 |
+
The rotary position embeddings from RoFormer_ (Su et. al).
|
330 |
+
A crucial insight from the method is that the query and keys are
|
331 |
+
transformed by rotation matrices which depend on the relative positions.
|
332 |
+
|
333 |
+
Other implementations are available in the Rotary Transformer repo_ and in
|
334 |
+
GPT-NeoX_, GPT-NeoX was an inspiration
|
335 |
+
|
336 |
+
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
337 |
+
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
338 |
+
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
339 |
+
|
340 |
+
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
341 |
+
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
342 |
+
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
343 |
+
"""
|
344 |
+
|
345 |
+
def __init__(
|
346 |
+
self,
|
347 |
+
dim: int,
|
348 |
+
base=10000,
|
349 |
+
interleaved=False,
|
350 |
+
scale_base=None,
|
351 |
+
pos_idx_in_fp32=True,
|
352 |
+
device=None,
|
353 |
+
):
|
354 |
+
"""
|
355 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
356 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
357 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
358 |
+
otherwise they might be in lower precision.
|
359 |
+
This option was added because previously (before 2023-07-02), when we construct
|
360 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
361 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
362 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
363 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
364 |
+
embeddings for some positions will coincide.
|
365 |
+
To maintain compatibility with models previously trained in pure bf16,
|
366 |
+
we add this option.
|
367 |
+
"""
|
368 |
+
super().__init__()
|
369 |
+
self.dim = dim
|
370 |
+
self.base = base
|
371 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
372 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
373 |
+
inv_freq = self._compute_inv_freq(device)
|
374 |
+
self.register_buffer("inv_freq", inv_freq)
|
375 |
+
self.interleaved = interleaved
|
376 |
+
self.scale_base = scale_base
|
377 |
+
scale = (
|
378 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
379 |
+
if scale_base is not None
|
380 |
+
else None
|
381 |
+
)
|
382 |
+
self.register_buffer("scale", scale, persistent=False)
|
383 |
+
|
384 |
+
self._seq_len_cached = 0
|
385 |
+
self._cos_cached = None
|
386 |
+
self._sin_cached = None
|
387 |
+
self._cos_k_cached = None
|
388 |
+
self._sin_k_cached = None
|
389 |
+
self.cos = None
|
390 |
+
self.sin = None
|
391 |
+
|
392 |
+
def _compute_inv_freq(self, device=None):
|
393 |
+
return 1.0 / (
|
394 |
+
self.base
|
395 |
+
** (torch.arange(0, self.dim, 2, device=device) / self.dim)
|
396 |
+
# ** (torch.arange(0, self.dim, 2, device=device).float() / self.dim)
|
397 |
+
)
|
398 |
+
|
399 |
+
def _update_cos_sin_cache(self, seqlen, position_id, device=None, dtype=None):
|
400 |
+
|
401 |
+
if (
|
402 |
+
seqlen > self._seq_len_cached
|
403 |
+
):
|
404 |
+
self._seq_len_cached = seqlen
|
405 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
406 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
407 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
408 |
+
if self.pos_idx_in_fp32:
|
409 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
410 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
411 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
412 |
+
# cos & sin output to change significantly.
|
413 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
414 |
+
if self.inv_freq.dtype != torch.float32:
|
415 |
+
inv_freq = self._compute_inv_freq(device=device)
|
416 |
+
else:
|
417 |
+
inv_freq = self.inv_freq
|
418 |
+
else:
|
419 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
420 |
+
inv_freq = self.inv_freq
|
421 |
+
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
422 |
+
if self.scale is None:
|
423 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
424 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
425 |
+
|
426 |
+
else:
|
427 |
+
power = (
|
428 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
429 |
+
- seqlen // 2
|
430 |
+
) / self.scale_base
|
431 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
432 |
+
# We want the multiplication by scale to happen in fp32
|
433 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
434 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
435 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
436 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
437 |
+
|
438 |
+
def forward(
|
439 |
+
self,
|
440 |
+
q: torch.Tensor,
|
441 |
+
k: torch.Tensor,
|
442 |
+
position_ids: torch.Tensor,
|
443 |
+
max_seqlen,
|
444 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
445 |
+
"""
|
446 |
+
q: (batch, nheads, seqlen, headdim)
|
447 |
+
k: (batch, nheads, seqlen, headdim)
|
448 |
+
position_id: (batch, seqlen)
|
449 |
+
max_seqlen: int
|
450 |
+
layer_id: int
|
451 |
+
only if layer_id == 0, then update cons and sin
|
452 |
+
Apply rotary embedding *inplace* to q k.
|
453 |
+
"""
|
454 |
+
|
455 |
+
self._update_cos_sin_cache(max_seqlen, position_ids, device=q.device, dtype=q.dtype)
|
456 |
+
cos, sin = F.embedding(position_ids, self._cos_cached), F.embedding(position_ids, self._sin_cached)
|
457 |
+
|
458 |
+
q = apply_rotary_emb_func(
|
459 |
+
q,
|
460 |
+
cos,
|
461 |
+
sin,
|
462 |
+
interleaved=self.interleaved,
|
463 |
+
inplace=True
|
464 |
+
)
|
465 |
+
k = apply_rotary_emb_func(
|
466 |
+
k,
|
467 |
+
cos,
|
468 |
+
sin,
|
469 |
+
interleaved=self.interleaved,
|
470 |
+
inplace=True
|
471 |
+
)
|
472 |
+
return q, k
|
visual.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from argparse import Namespace
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers.activations import ACT2FN
|
6 |
+
import math
|
7 |
+
|
8 |
+
def standard_attention(query_layer, key_layer, value_layer, scaling_attention_score=True):
|
9 |
+
if scaling_attention_score:
|
10 |
+
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
|
11 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
12 |
+
|
13 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
14 |
+
|
15 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
16 |
+
return context_layer
|
17 |
+
|
18 |
+
def attention_fn_default(query_layer, key_layer, value_layer, scaling_attention_score=True):
|
19 |
+
# expand head dim to query dim, if necessary
|
20 |
+
# only useful for multi-query attention
|
21 |
+
batch_size, num_query_heads = query_layer.shape[:2] # [b, np, s, hn]
|
22 |
+
num_kv_heads = key_layer.shape[1] # [b, np, s, hn]
|
23 |
+
key_layer = key_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *key_layer.shape[2:])
|
24 |
+
value_layer = value_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *value_layer.shape[2:])
|
25 |
+
|
26 |
+
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score:
|
27 |
+
# Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
|
28 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
29 |
+
query_layer, key_layer, value_layer,
|
30 |
+
attn_mask=None,
|
31 |
+
dropout_p=0.,
|
32 |
+
is_causal=False
|
33 |
+
)
|
34 |
+
return attn_output
|
35 |
+
else:
|
36 |
+
return standard_attention(
|
37 |
+
query_layer, key_layer, value_layer, scaling_attention_score=scaling_attention_score
|
38 |
+
)
|
39 |
+
|
40 |
+
class PatchEmbedding(nn.Module):
|
41 |
+
def __init__(self, config):
|
42 |
+
super().__init__()
|
43 |
+
self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
|
44 |
+
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
|
45 |
+
self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
|
46 |
+
|
47 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
48 |
+
x = self.proj(images)
|
49 |
+
x = x.flatten(2).transpose(1, 2)
|
50 |
+
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
|
51 |
+
x = torch.cat((cls_token, x), dim=1)
|
52 |
+
x += self.position_embedding.weight.unsqueeze(0)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class Attention(nn.Module):
|
57 |
+
def __init__(self, config):
|
58 |
+
super().__init__()
|
59 |
+
self.num_heads = config.num_heads
|
60 |
+
head_dim = config.hidden_size // config.num_heads
|
61 |
+
self.scale = head_dim ** -0.5
|
62 |
+
self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
|
63 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
64 |
+
self.output_dropout = torch.nn.Dropout(config.dropout_prob)
|
65 |
+
|
66 |
+
def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
|
67 |
+
B, L, _ = x.shape
|
68 |
+
qkv = self.query_key_value(x)
|
69 |
+
qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, H, L, D
|
70 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
71 |
+
|
72 |
+
out = attention_fn_default(
|
73 |
+
q, k, v
|
74 |
+
) # 24 x 3 x
|
75 |
+
out = out.transpose(2, 1)
|
76 |
+
# breakpoint()
|
77 |
+
# output = self.dense(out.reshape(B, L, -1))
|
78 |
+
output = self.dense(out.view(B, L, -1))
|
79 |
+
output = self.output_dropout(output)
|
80 |
+
return output
|
81 |
+
|
82 |
+
def attention(self, q, k, v):
|
83 |
+
attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
|
84 |
+
attn_weights = attn_weights.softmax(dim=-1)
|
85 |
+
output = torch.matmul(attn_weights, v)
|
86 |
+
return output
|
87 |
+
|
88 |
+
|
89 |
+
class MLP(nn.Module):
|
90 |
+
def __init__(self, config):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
94 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
95 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
96 |
+
|
97 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
98 |
+
x = self.fc1(x)
|
99 |
+
x = self.activation_fn(x)
|
100 |
+
x = self.fc2(x)
|
101 |
+
return x
|
102 |
+
|
103 |
+
|
104 |
+
class TransformerLayer(nn.Module):
|
105 |
+
def __init__(self, config):
|
106 |
+
super().__init__()
|
107 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
108 |
+
self.attention = Attention(config)
|
109 |
+
self.mlp = MLP(config)
|
110 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
111 |
+
|
112 |
+
def forward(self, hidden_states):
|
113 |
+
attention_input = hidden_states
|
114 |
+
attention_output = self.input_layernorm(self.attention(attention_input))
|
115 |
+
hidden_states = attention_input + attention_output
|
116 |
+
mlp_input = hidden_states
|
117 |
+
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
|
118 |
+
output = mlp_input + mlp_output
|
119 |
+
return output
|
120 |
+
|
121 |
+
|
122 |
+
class Transformer(nn.Module):
|
123 |
+
def __init__(self, config):
|
124 |
+
super().__init__()
|
125 |
+
self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
|
126 |
+
|
127 |
+
def forward(self, hidden_states):
|
128 |
+
for layer_module in self.layers:
|
129 |
+
hidden_states = layer_module(hidden_states)
|
130 |
+
return hidden_states
|
131 |
+
|
132 |
+
|
133 |
+
class GLU(nn.Module):
|
134 |
+
def __init__(self, config, in_features):
|
135 |
+
super().__init__()
|
136 |
+
self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
|
137 |
+
self.norm1 = nn.LayerNorm(config.hidden_size)
|
138 |
+
self.act1 = nn.GELU()
|
139 |
+
self.act2 = nn.functional.silu
|
140 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
141 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
142 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
143 |
+
|
144 |
+
def forward(self, x):
|
145 |
+
x = self.linear_proj(x)
|
146 |
+
x = self.act1(self.norm1(x))
|
147 |
+
x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
|
148 |
+
x = self.dense_4h_to_h(x)
|
149 |
+
return x
|
150 |
+
|
151 |
+
|
152 |
+
class EVA2CLIPModel(nn.Module):
|
153 |
+
def __init__(self, config):
|
154 |
+
super().__init__()
|
155 |
+
vision_config = Namespace(**config.vision_config)
|
156 |
+
self.patch_embedding = PatchEmbedding(vision_config)
|
157 |
+
self.transformer = Transformer(vision_config)
|
158 |
+
self.linear_proj = GLU(config, in_features=vision_config.hidden_size)
|
159 |
+
self.conv = nn.Conv2d(in_channels=vision_config.hidden_size, out_channels=vision_config.hidden_size, kernel_size=2, stride=2)
|
160 |
+
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
161 |
+
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
162 |
+
|
163 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
164 |
+
x = self.patch_embedding(images)
|
165 |
+
x = self.transformer(x)
|
166 |
+
x = x[:, 1:]
|
167 |
+
b, s, h = x.shape
|
168 |
+
grid_size = int(s**0.5)
|
169 |
+
x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2)
|
170 |
+
x = self.conv(x)
|
171 |
+
|
172 |
+
x = x.flatten(2).transpose(1, 2)
|
173 |
+
x = self.linear_proj(x)
|
174 |
+
boi = self.boi.expand(x.shape[0], -1, -1)
|
175 |
+
eoi = self.eoi.expand(x.shape[0], -1, -1)
|
176 |
+
x = torch.cat((boi, x, eoi), dim=1)
|
177 |
+
return x
|