Safetensors
English
qwen2
RicardoL1u commited on
Commit
ba8d3ac
·
verified ·
1 Parent(s): 0c27902

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -1
README.md CHANGED
@@ -6,4 +6,71 @@ language:
6
  - en
7
  base_model:
8
  - Qwen/Qwen2.5-7B-Instruct
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - en
7
  base_model:
8
  - Qwen/Qwen2.5-7B-Instruct
9
+ ---
10
+
11
+ # PairJudge RM
12
+
13
+
14
+ **PairJudge RM** is a pairwise judge reward model designed to enhance Best-of-N sampling for mathematical reasoning tasks. Instead of assigning arbitrary absolute scores to candidate solutions, PairJudge RM compares them in pairs using chain-of-thought (CoT) reasoning and selects the best answer via a knockout tournament strategy.
15
+
16
+ - Paper: https://arxiv.org/abs/2501.13007
17
+ - Code: https://github.com/THU-KEG/PairJudgeRM
18
+ - Dataset: https://huggingface.co/datasets/THU-KEG/PairJudge-432K
19
+
20
+
21
+ ## Overview
22
+
23
+ - **Pairwise Judgment:** Evaluates two candidate solutions simultaneously to determine which is more correct.
24
+ - **Chain-of-Thought Reasoning:** Leverages CoT to transparently verify each step of the candidate solutions.
25
+
26
+ ## Model Architecture & Training
27
+
28
+ PairJudge RM is built by fine-tuning a pre-trained language model (e.g., Qwen-2.5-7B-Instruct) on the PAIRJUDGE-432K dataset. Key training details include:
29
+
30
+ - **Optimizer:** Adam
31
+ - **Learning Rate:** 1×10⁻⁵
32
+ - **Batch Size:** 128
33
+ - **Epochs:** 8
34
+
35
+ ## Usage
36
+
37
+ Below is an example of how to use PairJudge RM for evaluating candidate solutions:
38
+
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForCausalLM
41
+
42
+ # template file is avaliable in [https://github.com/THU-KEG/PairwiseRM/blob/main/prompt/compare_0_ex.md]
43
+ TEMPLATE = open("prompts/compare_0_ex.md", "r").read()
44
+
45
+ # Load the tokenizer and model from Hugging Face
46
+ tokenizer = AutoTokenizer.from_pretrained("THU-KEG/PairJudgeRM")
47
+ model = AutoModelForCausalLM.from_pretrained("THU-KEG/PairJudgeRM")
48
+
49
+ # Example math problem and candidate solutions
50
+ question = "If one equilateral triangle in a regular hexagon has a perimeter of 21 inches, what is the hexagon’s perimeter?"
51
+ response_a = "Each side is 7 inches; hexagon perimeter is 42 inches."
52
+ response_b = "The triangle's perimeter is 21 inches; hexagon perimeter is 126 inches."
53
+
54
+ # Construct the input prompt for pairwise judgment
55
+ input_text = template.format(question=question, response_a=response_a, response_b=response_b)
56
+ inputs = tokenizer(input_text, return_tensors="pt")
57
+
58
+ # Generate the judgment with a chain-of-thought explanation
59
+ outputs = model.generate(**inputs, max_new_tokens=2048)
60
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
61
+ ```
62
+
63
+
64
+ ## Citation
65
+ If you find our work useful, please consider citing our paper:
66
+
67
+ ```
68
+ @article{liu2025PairJudge,
69
+ title={PairJudge RM: Perform Best-of-N Sampling with Knockout Tournament},
70
+ author={Liu, Yantao and Yao, Zijun and Min, Rui and Cao, Yixin and Hou, Lei and Li, Juanzi},
71
+ journal={arXiv preprint arXiv:2501.13007},
72
+ year={2025},
73
+ note={in progress work},
74
+ url={https://doi.org/10.48550/arXiv.2501.13007}
75
+ }
76
+ ```