End of training
Browse files
README.md
CHANGED
|
@@ -20,7 +20,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 20 |
axolotl version: `0.6.0`
|
| 21 |
```yaml
|
| 22 |
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
|
| 23 |
-
batch_size:
|
| 24 |
bf16: true
|
| 25 |
chat_template: tokenizer_default_fallback_alpaca
|
| 26 |
datasets:
|
|
@@ -36,26 +36,26 @@ datasets:
|
|
| 36 |
system_prompt: ''
|
| 37 |
device_map: auto
|
| 38 |
eval_sample_packing: false
|
| 39 |
-
eval_steps:
|
| 40 |
flash_attention: true
|
| 41 |
-
|
| 42 |
group_by_length: true
|
| 43 |
hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM
|
| 44 |
hub_strategy: checkpoint
|
| 45 |
learning_rate: 0.0002
|
| 46 |
logging_steps: 10
|
| 47 |
lr_scheduler: cosine
|
| 48 |
-
max_steps:
|
| 49 |
-
micro_batch_size:
|
| 50 |
model_type: AutoModelForCausalLM
|
| 51 |
num_epochs: 100
|
| 52 |
optimizer: adamw_bnb_8bit
|
| 53 |
-
output_dir: /root/.sn56/axolotl/
|
| 54 |
pad_to_sequence_len: true
|
| 55 |
resize_token_embeddings_to_32x: false
|
| 56 |
-
sample_packing:
|
| 57 |
-
save_steps:
|
| 58 |
-
save_total_limit:
|
| 59 |
sequence_len: 2048
|
| 60 |
tokenizer_type: LlamaTokenizerFast
|
| 61 |
torch_dtype: bf16
|
|
@@ -77,7 +77,7 @@ warmup_ratio: 0.05
|
|
| 77 |
|
| 78 |
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset.
|
| 79 |
It achieves the following results on the evaluation set:
|
| 80 |
-
- Loss:
|
| 81 |
|
| 82 |
## Model description
|
| 83 |
|
|
@@ -97,36 +97,43 @@ More information needed
|
|
| 97 |
|
| 98 |
The following hyperparameters were used during training:
|
| 99 |
- learning_rate: 0.0002
|
| 100 |
-
- train_batch_size:
|
| 101 |
-
- eval_batch_size:
|
| 102 |
- seed: 42
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 104 |
- lr_scheduler_type: cosine
|
| 105 |
-
- lr_scheduler_warmup_steps:
|
| 106 |
-
- training_steps:
|
| 107 |
|
| 108 |
### Training results
|
| 109 |
|
| 110 |
-
| Training Loss | Epoch
|
| 111 |
-
|
| 112 |
-
| No log | 0.
|
| 113 |
-
|
|
| 114 |
-
|
|
| 115 |
-
|
|
| 116 |
-
|
|
| 117 |
-
|
|
| 118 |
-
|
|
| 119 |
-
|
|
| 120 |
-
|
|
| 121 |
-
|
|
| 122 |
-
|
|
| 123 |
-
|
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
|
| 127 |
### Framework versions
|
| 128 |
|
| 129 |
- Transformers 4.48.1
|
| 130 |
-
- Pytorch 2.
|
| 131 |
- Datasets 3.2.0
|
| 132 |
- Tokenizers 0.21.0
|
|
|
|
| 20 |
axolotl version: `0.6.0`
|
| 21 |
```yaml
|
| 22 |
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
|
| 23 |
+
batch_size: 64
|
| 24 |
bf16: true
|
| 25 |
chat_template: tokenizer_default_fallback_alpaca
|
| 26 |
datasets:
|
|
|
|
| 36 |
system_prompt: ''
|
| 37 |
device_map: auto
|
| 38 |
eval_sample_packing: false
|
| 39 |
+
eval_steps: 40
|
| 40 |
flash_attention: true
|
| 41 |
+
gradient_checkpointing: true
|
| 42 |
group_by_length: true
|
| 43 |
hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM
|
| 44 |
hub_strategy: checkpoint
|
| 45 |
learning_rate: 0.0002
|
| 46 |
logging_steps: 10
|
| 47 |
lr_scheduler: cosine
|
| 48 |
+
max_steps: 5000
|
| 49 |
+
micro_batch_size: 32
|
| 50 |
model_type: AutoModelForCausalLM
|
| 51 |
num_epochs: 100
|
| 52 |
optimizer: adamw_bnb_8bit
|
| 53 |
+
output_dir: /root/.sn56/axolotl/tmp/tiny-random-LlamaForCausalLM
|
| 54 |
pad_to_sequence_len: true
|
| 55 |
resize_token_embeddings_to_32x: false
|
| 56 |
+
sample_packing: true
|
| 57 |
+
save_steps: 20
|
| 58 |
+
save_total_limit: 2
|
| 59 |
sequence_len: 2048
|
| 60 |
tokenizer_type: LlamaTokenizerFast
|
| 61 |
torch_dtype: bf16
|
|
|
|
| 77 |
|
| 78 |
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset.
|
| 79 |
It achieves the following results on the evaluation set:
|
| 80 |
+
- Loss: 9.1944
|
| 81 |
|
| 82 |
## Model description
|
| 83 |
|
|
|
|
| 97 |
|
| 98 |
The following hyperparameters were used during training:
|
| 99 |
- learning_rate: 0.0002
|
| 100 |
+
- train_batch_size: 32
|
| 101 |
+
- eval_batch_size: 32
|
| 102 |
- seed: 42
|
| 103 |
+
- distributed_type: multi-GPU
|
| 104 |
+
- num_devices: 2
|
| 105 |
+
- total_train_batch_size: 64
|
| 106 |
+
- total_eval_batch_size: 64
|
| 107 |
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 108 |
- lr_scheduler_type: cosine
|
| 109 |
+
- lr_scheduler_warmup_steps: 30
|
| 110 |
+
- training_steps: 600
|
| 111 |
|
| 112 |
### Training results
|
| 113 |
|
| 114 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 115 |
+
|:-------------:|:-------:|:----:|:---------------:|
|
| 116 |
+
| No log | 0.0769 | 1 | 10.3764 |
|
| 117 |
+
| 10.3522 | 3.0769 | 40 | 10.3366 |
|
| 118 |
+
| 10.1177 | 6.1538 | 80 | 10.0885 |
|
| 119 |
+
| 9.8887 | 9.2308 | 120 | 9.8677 |
|
| 120 |
+
| 9.688 | 12.3077 | 160 | 9.6724 |
|
| 121 |
+
| 9.5151 | 15.3846 | 200 | 9.5050 |
|
| 122 |
+
| 9.3725 | 18.4615 | 240 | 9.3687 |
|
| 123 |
+
| 9.2678 | 21.5385 | 280 | 9.2734 |
|
| 124 |
+
| 9.2101 | 24.6154 | 320 | 9.2205 |
|
| 125 |
+
| 9.186 | 27.6923 | 360 | 9.2018 |
|
| 126 |
+
| 9.18 | 30.7692 | 400 | 9.1964 |
|
| 127 |
+
| 9.1787 | 33.8462 | 440 | 9.1945 |
|
| 128 |
+
| 9.1768 | 36.9231 | 480 | 9.1941 |
|
| 129 |
+
| 9.1775 | 40.0 | 520 | 9.1938 |
|
| 130 |
+
| 9.1784 | 43.0769 | 560 | 9.1949 |
|
| 131 |
+
| 9.1762 | 46.1538 | 600 | 9.1944 |
|
| 132 |
|
| 133 |
|
| 134 |
### Framework versions
|
| 135 |
|
| 136 |
- Transformers 4.48.1
|
| 137 |
+
- Pytorch 2.5.1+cu124
|
| 138 |
- Datasets 3.2.0
|
| 139 |
- Tokenizers 0.21.0
|