base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct batch_size: 32 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - data_files: - 8cea1b501202bc61_train_data.json ds_type: json format: custom path: /workspace/input_data/8cea1b501202bc61_train_data.json type: field_instruction: principle field_output: instruction format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' eval_steps: 20 flash_attention: true gpu_memory_limit: 80GiB gradient_checkpointing: true group_by_length: true hub_model_id: SystemAdmin123/4797a41f-d00c-44df-82e0-f23102492c0b hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lr_scheduler: cosine micro_batch_size: 2 model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_bnb_8bit output_dir: /workspace/axolotl/configs pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false save_steps: 40 save_total_limit: 1 sequence_len: 2048 special_tokens: pad_token: <|eot_id|> tokenizer_type: PreTrainedTokenizerFast train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_name: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct-/tmp/8cea1b501202bc61_train_data.json wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 xformers_attention: true