--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:100K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Bone Saw', 'Bone Saw Sklar Inch', 'Mask Component Headgear Opus', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 231,882 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:--------------------------------------------------------------------------------|:------------------------------------------------------| | Biopsy Cassette Thermo Scientific Shandon Acetal Blue | Biopsy Cassette Blue Acetal | | Tissue Cassette Thermo Scientific Shandon Acetal Fluorescent Green | Tissue Cassette Fluorescent Green Acetal | | Tissue Cassette Thermo Scientific Shandon Acetal Fluorescent Pink | Tissue Cassette Fluorescent Pink Acetal | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `num_train_epochs`: 4 - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:------:|:------:|:-------------:| | 0.0172 | 500 | 0.1383 | | 0.0345 | 1000 | 0.1183 | | 0.0517 | 1500 | 0.1054 | | 0.0690 | 2000 | 0.0727 | | 0.0862 | 2500 | 0.0829 | | 0.1035 | 3000 | 0.0559 | | 0.1207 | 3500 | 0.1274 | | 0.1380 | 4000 | 0.0587 | | 0.1552 | 4500 | 0.0704 | | 0.1725 | 5000 | 0.0863 | | 0.1897 | 5500 | 0.0888 | | 0.2070 | 6000 | 0.1099 | | 0.2242 | 6500 | 0.1126 | | 0.2415 | 7000 | 0.1192 | | 0.2587 | 7500 | 0.1082 | | 0.2760 | 8000 | 0.1069 | | 0.2932 | 8500 | 0.1268 | | 0.3105 | 9000 | 0.0913 | | 0.3277 | 9500 | 0.1267 | | 0.3450 | 10000 | 0.1156 | | 0.3622 | 10500 | 0.1522 | | 0.3795 | 11000 | 0.088 | | 0.3967 | 11500 | 0.0906 | | 0.4140 | 12000 | 0.0776 | | 0.4312 | 12500 | 0.0956 | | 0.4485 | 13000 | 0.1111 | | 0.4657 | 13500 | 0.0889 | | 0.4830 | 14000 | 0.0765 | | 0.5002 | 14500 | 0.1162 | | 0.5175 | 15000 | 0.0581 | | 0.5347 | 15500 | 0.0831 | | 0.5520 | 16000 | 0.0915 | | 0.5692 | 16500 | 0.0623 | | 0.5865 | 17000 | 0.0702 | | 0.6037 | 17500 | 0.0447 | | 0.6210 | 18000 | 0.0715 | | 0.6382 | 18500 | 0.0749 | | 0.6555 | 19000 | 0.3381 | | 0.6727 | 19500 | 0.0749 | | 0.6900 | 20000 | 0.0614 | | 0.7072 | 20500 | 0.1093 | | 0.7245 | 21000 | 0.0847 | | 0.7417 | 21500 | 0.063 | | 0.7590 | 22000 | 0.0657 | | 0.7762 | 22500 | 0.061 | | 0.7935 | 23000 | 0.0837 | | 0.8107 | 23500 | 0.0989 | | 0.8280 | 24000 | 0.0523 | | 0.8452 | 24500 | 0.0817 | | 0.8625 | 25000 | 0.0533 | | 0.8797 | 25500 | 0.0584 | | 0.8970 | 26000 | 0.0353 | | 0.9142 | 26500 | 0.0146 | | 0.9315 | 27000 | 0.0831 | | 0.9487 | 27500 | 0.049 | | 0.9660 | 28000 | 0.0741 | | 0.9832 | 28500 | 0.0469 | | 1.0004 | 29000 | 0.063 | | 1.0177 | 29500 | 0.0846 | | 1.0349 | 30000 | 0.058 | | 1.0522 | 30500 | 0.0701 | | 1.0694 | 31000 | 0.0451 | | 1.0867 | 31500 | 0.0506 | | 1.1039 | 32000 | 0.0311 | | 1.1212 | 32500 | 0.0761 | | 1.1384 | 33000 | 0.0356 | | 1.1557 | 33500 | 0.0387 | | 1.1729 | 34000 | 0.0532 | | 1.1902 | 34500 | 0.0568 | | 1.2074 | 35000 | 0.0654 | | 1.2247 | 35500 | 0.0726 | | 1.2419 | 36000 | 0.0839 | | 1.2592 | 36500 | 0.0698 | | 1.2764 | 37000 | 0.0824 | | 1.2937 | 37500 | 0.0832 | | 1.3109 | 38000 | 0.0622 | | 1.3282 | 38500 | 0.0849 | | 1.3454 | 39000 | 0.0724 | | 1.3627 | 39500 | 0.1039 | | 1.3799 | 40000 | 0.0581 | | 1.3972 | 40500 | 0.0561 | | 1.4144 | 41000 | 0.0666 | | 1.4317 | 41500 | 0.0687 | | 1.4489 | 42000 | 0.0793 | | 1.4662 | 42500 | 0.0638 | | 1.4834 | 43000 | 0.0544 | | 1.5007 | 43500 | 0.0686 | | 1.5179 | 44000 | 0.0408 | | 1.5352 | 44500 | 0.0602 | | 1.5524 | 45000 | 0.0663 | | 1.5697 | 45500 | 0.0488 | | 1.5869 | 46000 | 0.047 | | 1.6042 | 46500 | 0.0326 | | 1.6214 | 47000 | 0.0644 | | 1.6387 | 47500 | 0.0582 | | 1.6559 | 48000 | 0.2124 | | 1.6732 | 48500 | 0.0482 | | 1.6904 | 49000 | 0.0389 | | 1.7077 | 49500 | 0.0847 | | 1.7249 | 50000 | 0.0636 | | 1.7422 | 50500 | 0.044 | | 1.7594 | 51000 | 0.0403 | | 1.7767 | 51500 | 0.0397 | | 1.7939 | 52000 | 0.0545 | | 1.8112 | 52500 | 0.0681 | | 1.8284 | 53000 | 0.0422 | | 1.8456 | 53500 | 0.0522 | | 1.8629 | 54000 | 0.0394 | | 1.8801 | 54500 | 0.041 | | 1.8974 | 55000 | 0.0232 | | 1.9146 | 55500 | 0.0176 | | 1.9319 | 56000 | 0.0471 | | 1.9491 | 56500 | 0.0337 | | 1.9664 | 57000 | 0.0439 | | 1.9836 | 57500 | 0.0321 | | 2.0008 | 58000 | 0.0433 | | 2.0181 | 58500 | 0.0672 | | 2.0353 | 59000 | 0.0441 | | 2.0526 | 59500 | 0.0459 | | 2.0698 | 60000 | 0.0342 | | 2.0871 | 60500 | 0.0369 | | 2.1043 | 61000 | 0.0205 | | 2.1216 | 61500 | 0.0605 | | 2.1388 | 62000 | 0.0252 | | 2.1561 | 62500 | 0.0276 | | 2.1733 | 63000 | 0.0406 | | 2.1906 | 63500 | 0.0451 | | 2.2078 | 64000 | 0.0447 | | 2.2251 | 64500 | 0.0523 | | 2.2423 | 65000 | 0.062 | | 2.2596 | 65500 | 0.0514 | | 2.2768 | 66000 | 0.0677 | | 2.2941 | 66500 | 0.0655 | | 2.3113 | 67000 | 0.0494 | | 2.3286 | 67500 | 0.0728 | | 2.3458 | 68000 | 0.0585 | | 2.3631 | 68500 | 0.0866 | | 2.3803 | 69000 | 0.0409 | | 2.3976 | 69500 | 0.0429 | | 2.4148 | 70000 | 0.0534 | | 2.4321 | 70500 | 0.0542 | | 2.4493 | 71000 | 0.0563 | | 2.4666 | 71500 | 0.0488 | | 2.4838 | 72000 | 0.0401 | | 2.5011 | 72500 | 0.0575 | | 2.5183 | 73000 | 0.0344 | | 2.5356 | 73500 | 0.052 | | 2.5528 | 74000 | 0.0569 | | 2.5701 | 74500 | 0.0408 | | 2.5873 | 75000 | 0.0384 | | 2.6046 | 75500 | 0.0281 | | 2.6218 | 76000 | 0.0447 | | 2.6391 | 76500 | 0.0495 | | 2.6563 | 77000 | 0.1492 | | 2.6736 | 77500 | 0.0314 | | 2.6908 | 78000 | 0.0314 | | 2.7081 | 78500 | 0.0691 | | 2.7253 | 79000 | 0.0496 | | 2.7426 | 79500 | 0.0309 | | 2.7598 | 80000 | 0.0323 | | 2.7771 | 80500 | 0.0357 | | 2.7943 | 81000 | 0.0387 | | 2.8116 | 81500 | 0.0544 | | 2.8288 | 82000 | 0.0297 | | 2.8461 | 82500 | 0.0384 | | 2.8633 | 83000 | 0.0332 | | 2.8806 | 83500 | 0.031 | | 2.8978 | 84000 | 0.017 | | 2.9151 | 84500 | 0.0223 | | 2.9323 | 85000 | 0.0271 | | 2.9496 | 85500 | 0.0298 | | 2.9668 | 86000 | 0.0297 | | 2.9841 | 86500 | 0.026 | | 3.0012 | 87000 | 0.0266 | | 3.0185 | 87500 | 0.0531 | | 3.0357 | 88000 | 0.0342 | | 3.0530 | 88500 | 0.039 | | 3.0702 | 89000 | 0.0263 | | 3.0875 | 89500 | 0.0288 | | 3.1047 | 90000 | 0.0158 | | 3.1220 | 90500 | 0.0484 | | 3.1392 | 91000 | 0.0179 | | 3.1565 | 91500 | 0.0215 | | 3.1737 | 92000 | 0.0316 | | 3.1910 | 92500 | 0.0395 | | 3.2082 | 93000 | 0.037 | | 3.2255 | 93500 | 0.0389 | | 3.2427 | 94000 | 0.0512 | | 3.2600 | 94500 | 0.0451 | | 3.2772 | 95000 | 0.0583 | | 3.2945 | 95500 | 0.0502 | | 3.3117 | 96000 | 0.0407 | | 3.3290 | 96500 | 0.0628 | | 3.3462 | 97000 | 0.0434 | | 3.3635 | 97500 | 0.0741 | | 3.3807 | 98000 | 0.0318 | | 3.3980 | 98500 | 0.0387 | | 3.4152 | 99000 | 0.041 | | 3.4325 | 99500 | 0.0429 | | 3.4497 | 100000 | 0.0514 | | 3.4670 | 100500 | 0.0377 | | 3.4842 | 101000 | 0.0355 | | 3.5015 | 101500 | 0.043 | | 3.5187 | 102000 | 0.029 | | 3.5360 | 102500 | 0.047 | | 3.5532 | 103000 | 0.0554 | | 3.5705 | 103500 | 0.0385 | | 3.5877 | 104000 | 0.0294 | | 3.6050 | 104500 | 0.023 | | 3.6222 | 105000 | 0.0381 | | 3.6395 | 105500 | 0.0422 | | 3.6567 | 106000 | 0.1091 | | 3.6740 | 106500 | 0.0289 | | 3.6912 | 107000 | 0.0276 | | 3.7085 | 107500 | 0.0606 | | 3.7257 | 108000 | 0.0402 | | 3.7430 | 108500 | 0.0256 | | 3.7602 | 109000 | 0.0279 | | 3.7775 | 109500 | 0.0317 | | 3.7947 | 110000 | 0.0303 | | 3.8120 | 110500 | 0.0492 | | 3.8292 | 111000 | 0.0239 | | 3.8465 | 111500 | 0.0297 | | 3.8637 | 112000 | 0.0293 | | 3.8810 | 112500 | 0.0278 | | 3.8982 | 113000 | 0.0134 | | 3.9155 | 113500 | 0.0192 | | 3.9327 | 114000 | 0.0235 | | 3.9500 | 114500 | 0.0268 | | 3.9672 | 115000 | 0.022 | | 3.9845 | 115500 | 0.0235 |
### Framework Versions - Python: 3.9.19 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.3.0+cu121 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```