Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +581 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- dataset_size:100K<n<1M
|
9 |
+
- loss:MultipleNegativesRankingLoss
|
10 |
+
base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
11 |
+
widget:
|
12 |
+
- source_sentence: Adapter
|
13 |
+
sentences:
|
14 |
+
- Valved Tee Spring Adapter
|
15 |
+
- Os Cervical Dilator Set Teflon
|
16 |
+
- Alarm Belt Sensor Posey Up to Length
|
17 |
+
- source_sentence: Headboard
|
18 |
+
sentences:
|
19 |
+
- HeadBoard For Bed
|
20 |
+
- Transcend Stair Chair Footrest
|
21 |
+
- Heel Flotation Positioner
|
22 |
+
- source_sentence: Hose Barb
|
23 |
+
sentences:
|
24 |
+
- Hose Barb Omeda Vacuum
|
25 |
+
- Orthopedic Drape Pack Sterile
|
26 |
+
- Retractor Surgical Length Surgical Grade
|
27 |
+
- source_sentence: Upper Arm
|
28 |
+
sentences:
|
29 |
+
- Refurbished -Arm
|
30 |
+
- Post-Op Shoe -Large Unisex Black
|
31 |
+
- Calf Strap Kit For Walker Boot
|
32 |
+
- source_sentence: Bone Saw
|
33 |
+
sentences:
|
34 |
+
- Bone Saw Sklar Inch
|
35 |
+
- Mask Component Headgear Opus
|
36 |
+
- Biopsy Cassette Histosette Acetal Lilac
|
37 |
+
pipeline_tag: sentence-similarity
|
38 |
+
---
|
39 |
+
|
40 |
+
# SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
41 |
+
|
42 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** Sentence Transformer
|
48 |
+
- **Base model:** [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) <!-- at revision 2430568290bb832d22ad5064f44dd86cf0240142 -->
|
49 |
+
- **Maximum Sequence Length:** 512 tokens
|
50 |
+
- **Output Dimensionality:** 384 tokens
|
51 |
+
- **Similarity Function:** Cosine Similarity
|
52 |
+
<!-- - **Training Dataset:** Unknown -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
59 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
60 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
61 |
+
|
62 |
+
### Full Model Architecture
|
63 |
+
|
64 |
+
```
|
65 |
+
SentenceTransformer(
|
66 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
67 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
68 |
+
(2): Normalize()
|
69 |
+
)
|
70 |
+
```
|
71 |
+
|
72 |
+
## Usage
|
73 |
+
|
74 |
+
### Direct Usage (Sentence Transformers)
|
75 |
+
|
76 |
+
First install the Sentence Transformers library:
|
77 |
+
|
78 |
+
```bash
|
79 |
+
pip install -U sentence-transformers
|
80 |
+
```
|
81 |
+
|
82 |
+
Then you can load this model and run inference.
|
83 |
+
```python
|
84 |
+
from sentence_transformers import SentenceTransformer
|
85 |
+
|
86 |
+
# Download from the 🤗 Hub
|
87 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
88 |
+
# Run inference
|
89 |
+
sentences = [
|
90 |
+
'Bone Saw',
|
91 |
+
'Bone Saw Sklar Inch',
|
92 |
+
'Mask Component Headgear Opus',
|
93 |
+
]
|
94 |
+
embeddings = model.encode(sentences)
|
95 |
+
print(embeddings.shape)
|
96 |
+
# [3, 384]
|
97 |
+
|
98 |
+
# Get the similarity scores for the embeddings
|
99 |
+
similarities = model.similarity(embeddings, embeddings)
|
100 |
+
print(similarities.shape)
|
101 |
+
# [3, 3]
|
102 |
+
```
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Direct Usage (Transformers)
|
106 |
+
|
107 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
108 |
+
|
109 |
+
</details>
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Downstream Usage (Sentence Transformers)
|
114 |
+
|
115 |
+
You can finetune this model on your own dataset.
|
116 |
+
|
117 |
+
<details><summary>Click to expand</summary>
|
118 |
+
|
119 |
+
</details>
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Out-of-Scope Use
|
124 |
+
|
125 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
## Bias, Risks and Limitations
|
130 |
+
|
131 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Recommendations
|
136 |
+
|
137 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
## Training Details
|
141 |
+
|
142 |
+
### Training Dataset
|
143 |
+
|
144 |
+
#### Unnamed Dataset
|
145 |
+
|
146 |
+
|
147 |
+
* Size: 231,882 training samples
|
148 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
149 |
+
* Approximate statistics based on the first 1000 samples:
|
150 |
+
| | anchor | positive |
|
151 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
152 |
+
| type | string | string |
|
153 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 14.16 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.28 tokens</li><li>max: 53 tokens</li></ul> |
|
154 |
+
* Samples:
|
155 |
+
| anchor | positive |
|
156 |
+
|:--------------------------------------------------------------------------------|:------------------------------------------------------|
|
157 |
+
| <code>Biopsy Cassette Thermo Scientific Shandon Acetal Blue</code> | <code>Biopsy Cassette Blue Acetal</code> |
|
158 |
+
| <code>Tissue Cassette Thermo Scientific Shandon Acetal Fluorescent Green</code> | <code>Tissue Cassette Fluorescent Green Acetal</code> |
|
159 |
+
| <code>Tissue Cassette Thermo Scientific Shandon Acetal Fluorescent Pink</code> | <code>Tissue Cassette Fluorescent Pink Acetal</code> |
|
160 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
161 |
+
```json
|
162 |
+
{
|
163 |
+
"scale": 20,
|
164 |
+
"similarity_fct": "cos_sim"
|
165 |
+
}
|
166 |
+
```
|
167 |
+
|
168 |
+
### Training Hyperparameters
|
169 |
+
#### Non-Default Hyperparameters
|
170 |
+
|
171 |
+
- `num_train_epochs`: 4
|
172 |
+
- `batch_sampler`: no_duplicates
|
173 |
+
|
174 |
+
#### All Hyperparameters
|
175 |
+
<details><summary>Click to expand</summary>
|
176 |
+
|
177 |
+
- `overwrite_output_dir`: False
|
178 |
+
- `do_predict`: False
|
179 |
+
- `eval_strategy`: no
|
180 |
+
- `prediction_loss_only`: True
|
181 |
+
- `per_device_train_batch_size`: 8
|
182 |
+
- `per_device_eval_batch_size`: 8
|
183 |
+
- `per_gpu_train_batch_size`: None
|
184 |
+
- `per_gpu_eval_batch_size`: None
|
185 |
+
- `gradient_accumulation_steps`: 1
|
186 |
+
- `eval_accumulation_steps`: None
|
187 |
+
- `learning_rate`: 5e-05
|
188 |
+
- `weight_decay`: 0.0
|
189 |
+
- `adam_beta1`: 0.9
|
190 |
+
- `adam_beta2`: 0.999
|
191 |
+
- `adam_epsilon`: 1e-08
|
192 |
+
- `max_grad_norm`: 1.0
|
193 |
+
- `num_train_epochs`: 4
|
194 |
+
- `max_steps`: -1
|
195 |
+
- `lr_scheduler_type`: linear
|
196 |
+
- `lr_scheduler_kwargs`: {}
|
197 |
+
- `warmup_ratio`: 0.0
|
198 |
+
- `warmup_steps`: 0
|
199 |
+
- `log_level`: passive
|
200 |
+
- `log_level_replica`: warning
|
201 |
+
- `log_on_each_node`: True
|
202 |
+
- `logging_nan_inf_filter`: True
|
203 |
+
- `save_safetensors`: True
|
204 |
+
- `save_on_each_node`: False
|
205 |
+
- `save_only_model`: False
|
206 |
+
- `restore_callback_states_from_checkpoint`: False
|
207 |
+
- `no_cuda`: False
|
208 |
+
- `use_cpu`: False
|
209 |
+
- `use_mps_device`: False
|
210 |
+
- `seed`: 42
|
211 |
+
- `data_seed`: None
|
212 |
+
- `jit_mode_eval`: False
|
213 |
+
- `use_ipex`: False
|
214 |
+
- `bf16`: False
|
215 |
+
- `fp16`: False
|
216 |
+
- `fp16_opt_level`: O1
|
217 |
+
- `half_precision_backend`: auto
|
218 |
+
- `bf16_full_eval`: False
|
219 |
+
- `fp16_full_eval`: False
|
220 |
+
- `tf32`: None
|
221 |
+
- `local_rank`: 0
|
222 |
+
- `ddp_backend`: None
|
223 |
+
- `tpu_num_cores`: None
|
224 |
+
- `tpu_metrics_debug`: False
|
225 |
+
- `debug`: []
|
226 |
+
- `dataloader_drop_last`: False
|
227 |
+
- `dataloader_num_workers`: 0
|
228 |
+
- `dataloader_prefetch_factor`: None
|
229 |
+
- `past_index`: -1
|
230 |
+
- `disable_tqdm`: False
|
231 |
+
- `remove_unused_columns`: True
|
232 |
+
- `label_names`: None
|
233 |
+
- `load_best_model_at_end`: False
|
234 |
+
- `ignore_data_skip`: False
|
235 |
+
- `fsdp`: []
|
236 |
+
- `fsdp_min_num_params`: 0
|
237 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
238 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
239 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
240 |
+
- `deepspeed`: None
|
241 |
+
- `label_smoothing_factor`: 0.0
|
242 |
+
- `optim`: adamw_torch
|
243 |
+
- `optim_args`: None
|
244 |
+
- `adafactor`: False
|
245 |
+
- `group_by_length`: False
|
246 |
+
- `length_column_name`: length
|
247 |
+
- `ddp_find_unused_parameters`: None
|
248 |
+
- `ddp_bucket_cap_mb`: None
|
249 |
+
- `ddp_broadcast_buffers`: False
|
250 |
+
- `dataloader_pin_memory`: True
|
251 |
+
- `dataloader_persistent_workers`: False
|
252 |
+
- `skip_memory_metrics`: True
|
253 |
+
- `use_legacy_prediction_loop`: False
|
254 |
+
- `push_to_hub`: False
|
255 |
+
- `resume_from_checkpoint`: None
|
256 |
+
- `hub_model_id`: None
|
257 |
+
- `hub_strategy`: every_save
|
258 |
+
- `hub_private_repo`: False
|
259 |
+
- `hub_always_push`: False
|
260 |
+
- `gradient_checkpointing`: False
|
261 |
+
- `gradient_checkpointing_kwargs`: None
|
262 |
+
- `include_inputs_for_metrics`: False
|
263 |
+
- `eval_do_concat_batches`: True
|
264 |
+
- `fp16_backend`: auto
|
265 |
+
- `push_to_hub_model_id`: None
|
266 |
+
- `push_to_hub_organization`: None
|
267 |
+
- `mp_parameters`:
|
268 |
+
- `auto_find_batch_size`: False
|
269 |
+
- `full_determinism`: False
|
270 |
+
- `torchdynamo`: None
|
271 |
+
- `ray_scope`: last
|
272 |
+
- `ddp_timeout`: 1800
|
273 |
+
- `torch_compile`: False
|
274 |
+
- `torch_compile_backend`: None
|
275 |
+
- `torch_compile_mode`: None
|
276 |
+
- `dispatch_batches`: None
|
277 |
+
- `split_batches`: None
|
278 |
+
- `include_tokens_per_second`: False
|
279 |
+
- `include_num_input_tokens_seen`: False
|
280 |
+
- `neftune_noise_alpha`: None
|
281 |
+
- `optim_target_modules`: None
|
282 |
+
- `batch_eval_metrics`: False
|
283 |
+
- `batch_sampler`: no_duplicates
|
284 |
+
- `multi_dataset_batch_sampler`: proportional
|
285 |
+
|
286 |
+
</details>
|
287 |
+
|
288 |
+
### Training Logs
|
289 |
+
<details><summary>Click to expand</summary>
|
290 |
+
|
291 |
+
| Epoch | Step | Training Loss |
|
292 |
+
|:------:|:------:|:-------------:|
|
293 |
+
| 0.0172 | 500 | 0.1383 |
|
294 |
+
| 0.0345 | 1000 | 0.1183 |
|
295 |
+
| 0.0517 | 1500 | 0.1054 |
|
296 |
+
| 0.0690 | 2000 | 0.0727 |
|
297 |
+
| 0.0862 | 2500 | 0.0829 |
|
298 |
+
| 0.1035 | 3000 | 0.0559 |
|
299 |
+
| 0.1207 | 3500 | 0.1274 |
|
300 |
+
| 0.1380 | 4000 | 0.0587 |
|
301 |
+
| 0.1552 | 4500 | 0.0704 |
|
302 |
+
| 0.1725 | 5000 | 0.0863 |
|
303 |
+
| 0.1897 | 5500 | 0.0888 |
|
304 |
+
| 0.2070 | 6000 | 0.1099 |
|
305 |
+
| 0.2242 | 6500 | 0.1126 |
|
306 |
+
| 0.2415 | 7000 | 0.1192 |
|
307 |
+
| 0.2587 | 7500 | 0.1082 |
|
308 |
+
| 0.2760 | 8000 | 0.1069 |
|
309 |
+
| 0.2932 | 8500 | 0.1268 |
|
310 |
+
| 0.3105 | 9000 | 0.0913 |
|
311 |
+
| 0.3277 | 9500 | 0.1267 |
|
312 |
+
| 0.3450 | 10000 | 0.1156 |
|
313 |
+
| 0.3622 | 10500 | 0.1522 |
|
314 |
+
| 0.3795 | 11000 | 0.088 |
|
315 |
+
| 0.3967 | 11500 | 0.0906 |
|
316 |
+
| 0.4140 | 12000 | 0.0776 |
|
317 |
+
| 0.4312 | 12500 | 0.0956 |
|
318 |
+
| 0.4485 | 13000 | 0.1111 |
|
319 |
+
| 0.4657 | 13500 | 0.0889 |
|
320 |
+
| 0.4830 | 14000 | 0.0765 |
|
321 |
+
| 0.5002 | 14500 | 0.1162 |
|
322 |
+
| 0.5175 | 15000 | 0.0581 |
|
323 |
+
| 0.5347 | 15500 | 0.0831 |
|
324 |
+
| 0.5520 | 16000 | 0.0915 |
|
325 |
+
| 0.5692 | 16500 | 0.0623 |
|
326 |
+
| 0.5865 | 17000 | 0.0702 |
|
327 |
+
| 0.6037 | 17500 | 0.0447 |
|
328 |
+
| 0.6210 | 18000 | 0.0715 |
|
329 |
+
| 0.6382 | 18500 | 0.0749 |
|
330 |
+
| 0.6555 | 19000 | 0.3381 |
|
331 |
+
| 0.6727 | 19500 | 0.0749 |
|
332 |
+
| 0.6900 | 20000 | 0.0614 |
|
333 |
+
| 0.7072 | 20500 | 0.1093 |
|
334 |
+
| 0.7245 | 21000 | 0.0847 |
|
335 |
+
| 0.7417 | 21500 | 0.063 |
|
336 |
+
| 0.7590 | 22000 | 0.0657 |
|
337 |
+
| 0.7762 | 22500 | 0.061 |
|
338 |
+
| 0.7935 | 23000 | 0.0837 |
|
339 |
+
| 0.8107 | 23500 | 0.0989 |
|
340 |
+
| 0.8280 | 24000 | 0.0523 |
|
341 |
+
| 0.8452 | 24500 | 0.0817 |
|
342 |
+
| 0.8625 | 25000 | 0.0533 |
|
343 |
+
| 0.8797 | 25500 | 0.0584 |
|
344 |
+
| 0.8970 | 26000 | 0.0353 |
|
345 |
+
| 0.9142 | 26500 | 0.0146 |
|
346 |
+
| 0.9315 | 27000 | 0.0831 |
|
347 |
+
| 0.9487 | 27500 | 0.049 |
|
348 |
+
| 0.9660 | 28000 | 0.0741 |
|
349 |
+
| 0.9832 | 28500 | 0.0469 |
|
350 |
+
| 1.0004 | 29000 | 0.063 |
|
351 |
+
| 1.0177 | 29500 | 0.0846 |
|
352 |
+
| 1.0349 | 30000 | 0.058 |
|
353 |
+
| 1.0522 | 30500 | 0.0701 |
|
354 |
+
| 1.0694 | 31000 | 0.0451 |
|
355 |
+
| 1.0867 | 31500 | 0.0506 |
|
356 |
+
| 1.1039 | 32000 | 0.0311 |
|
357 |
+
| 1.1212 | 32500 | 0.0761 |
|
358 |
+
| 1.1384 | 33000 | 0.0356 |
|
359 |
+
| 1.1557 | 33500 | 0.0387 |
|
360 |
+
| 1.1729 | 34000 | 0.0532 |
|
361 |
+
| 1.1902 | 34500 | 0.0568 |
|
362 |
+
| 1.2074 | 35000 | 0.0654 |
|
363 |
+
| 1.2247 | 35500 | 0.0726 |
|
364 |
+
| 1.2419 | 36000 | 0.0839 |
|
365 |
+
| 1.2592 | 36500 | 0.0698 |
|
366 |
+
| 1.2764 | 37000 | 0.0824 |
|
367 |
+
| 1.2937 | 37500 | 0.0832 |
|
368 |
+
| 1.3109 | 38000 | 0.0622 |
|
369 |
+
| 1.3282 | 38500 | 0.0849 |
|
370 |
+
| 1.3454 | 39000 | 0.0724 |
|
371 |
+
| 1.3627 | 39500 | 0.1039 |
|
372 |
+
| 1.3799 | 40000 | 0.0581 |
|
373 |
+
| 1.3972 | 40500 | 0.0561 |
|
374 |
+
| 1.4144 | 41000 | 0.0666 |
|
375 |
+
| 1.4317 | 41500 | 0.0687 |
|
376 |
+
| 1.4489 | 42000 | 0.0793 |
|
377 |
+
| 1.4662 | 42500 | 0.0638 |
|
378 |
+
| 1.4834 | 43000 | 0.0544 |
|
379 |
+
| 1.5007 | 43500 | 0.0686 |
|
380 |
+
| 1.5179 | 44000 | 0.0408 |
|
381 |
+
| 1.5352 | 44500 | 0.0602 |
|
382 |
+
| 1.5524 | 45000 | 0.0663 |
|
383 |
+
| 1.5697 | 45500 | 0.0488 |
|
384 |
+
| 1.5869 | 46000 | 0.047 |
|
385 |
+
| 1.6042 | 46500 | 0.0326 |
|
386 |
+
| 1.6214 | 47000 | 0.0644 |
|
387 |
+
| 1.6387 | 47500 | 0.0582 |
|
388 |
+
| 1.6559 | 48000 | 0.2124 |
|
389 |
+
| 1.6732 | 48500 | 0.0482 |
|
390 |
+
| 1.6904 | 49000 | 0.0389 |
|
391 |
+
| 1.7077 | 49500 | 0.0847 |
|
392 |
+
| 1.7249 | 50000 | 0.0636 |
|
393 |
+
| 1.7422 | 50500 | 0.044 |
|
394 |
+
| 1.7594 | 51000 | 0.0403 |
|
395 |
+
| 1.7767 | 51500 | 0.0397 |
|
396 |
+
| 1.7939 | 52000 | 0.0545 |
|
397 |
+
| 1.8112 | 52500 | 0.0681 |
|
398 |
+
| 1.8284 | 53000 | 0.0422 |
|
399 |
+
| 1.8456 | 53500 | 0.0522 |
|
400 |
+
| 1.8629 | 54000 | 0.0394 |
|
401 |
+
| 1.8801 | 54500 | 0.041 |
|
402 |
+
| 1.8974 | 55000 | 0.0232 |
|
403 |
+
| 1.9146 | 55500 | 0.0176 |
|
404 |
+
| 1.9319 | 56000 | 0.0471 |
|
405 |
+
| 1.9491 | 56500 | 0.0337 |
|
406 |
+
| 1.9664 | 57000 | 0.0439 |
|
407 |
+
| 1.9836 | 57500 | 0.0321 |
|
408 |
+
| 2.0008 | 58000 | 0.0433 |
|
409 |
+
| 2.0181 | 58500 | 0.0672 |
|
410 |
+
| 2.0353 | 59000 | 0.0441 |
|
411 |
+
| 2.0526 | 59500 | 0.0459 |
|
412 |
+
| 2.0698 | 60000 | 0.0342 |
|
413 |
+
| 2.0871 | 60500 | 0.0369 |
|
414 |
+
| 2.1043 | 61000 | 0.0205 |
|
415 |
+
| 2.1216 | 61500 | 0.0605 |
|
416 |
+
| 2.1388 | 62000 | 0.0252 |
|
417 |
+
| 2.1561 | 62500 | 0.0276 |
|
418 |
+
| 2.1733 | 63000 | 0.0406 |
|
419 |
+
| 2.1906 | 63500 | 0.0451 |
|
420 |
+
| 2.2078 | 64000 | 0.0447 |
|
421 |
+
| 2.2251 | 64500 | 0.0523 |
|
422 |
+
| 2.2423 | 65000 | 0.062 |
|
423 |
+
| 2.2596 | 65500 | 0.0514 |
|
424 |
+
| 2.2768 | 66000 | 0.0677 |
|
425 |
+
| 2.2941 | 66500 | 0.0655 |
|
426 |
+
| 2.3113 | 67000 | 0.0494 |
|
427 |
+
| 2.3286 | 67500 | 0.0728 |
|
428 |
+
| 2.3458 | 68000 | 0.0585 |
|
429 |
+
| 2.3631 | 68500 | 0.0866 |
|
430 |
+
| 2.3803 | 69000 | 0.0409 |
|
431 |
+
| 2.3976 | 69500 | 0.0429 |
|
432 |
+
| 2.4148 | 70000 | 0.0534 |
|
433 |
+
| 2.4321 | 70500 | 0.0542 |
|
434 |
+
| 2.4493 | 71000 | 0.0563 |
|
435 |
+
| 2.4666 | 71500 | 0.0488 |
|
436 |
+
| 2.4838 | 72000 | 0.0401 |
|
437 |
+
| 2.5011 | 72500 | 0.0575 |
|
438 |
+
| 2.5183 | 73000 | 0.0344 |
|
439 |
+
| 2.5356 | 73500 | 0.052 |
|
440 |
+
| 2.5528 | 74000 | 0.0569 |
|
441 |
+
| 2.5701 | 74500 | 0.0408 |
|
442 |
+
| 2.5873 | 75000 | 0.0384 |
|
443 |
+
| 2.6046 | 75500 | 0.0281 |
|
444 |
+
| 2.6218 | 76000 | 0.0447 |
|
445 |
+
| 2.6391 | 76500 | 0.0495 |
|
446 |
+
| 2.6563 | 77000 | 0.1492 |
|
447 |
+
| 2.6736 | 77500 | 0.0314 |
|
448 |
+
| 2.6908 | 78000 | 0.0314 |
|
449 |
+
| 2.7081 | 78500 | 0.0691 |
|
450 |
+
| 2.7253 | 79000 | 0.0496 |
|
451 |
+
| 2.7426 | 79500 | 0.0309 |
|
452 |
+
| 2.7598 | 80000 | 0.0323 |
|
453 |
+
| 2.7771 | 80500 | 0.0357 |
|
454 |
+
| 2.7943 | 81000 | 0.0387 |
|
455 |
+
| 2.8116 | 81500 | 0.0544 |
|
456 |
+
| 2.8288 | 82000 | 0.0297 |
|
457 |
+
| 2.8461 | 82500 | 0.0384 |
|
458 |
+
| 2.8633 | 83000 | 0.0332 |
|
459 |
+
| 2.8806 | 83500 | 0.031 |
|
460 |
+
| 2.8978 | 84000 | 0.017 |
|
461 |
+
| 2.9151 | 84500 | 0.0223 |
|
462 |
+
| 2.9323 | 85000 | 0.0271 |
|
463 |
+
| 2.9496 | 85500 | 0.0298 |
|
464 |
+
| 2.9668 | 86000 | 0.0297 |
|
465 |
+
| 2.9841 | 86500 | 0.026 |
|
466 |
+
| 3.0012 | 87000 | 0.0266 |
|
467 |
+
| 3.0185 | 87500 | 0.0531 |
|
468 |
+
| 3.0357 | 88000 | 0.0342 |
|
469 |
+
| 3.0530 | 88500 | 0.039 |
|
470 |
+
| 3.0702 | 89000 | 0.0263 |
|
471 |
+
| 3.0875 | 89500 | 0.0288 |
|
472 |
+
| 3.1047 | 90000 | 0.0158 |
|
473 |
+
| 3.1220 | 90500 | 0.0484 |
|
474 |
+
| 3.1392 | 91000 | 0.0179 |
|
475 |
+
| 3.1565 | 91500 | 0.0215 |
|
476 |
+
| 3.1737 | 92000 | 0.0316 |
|
477 |
+
| 3.1910 | 92500 | 0.0395 |
|
478 |
+
| 3.2082 | 93000 | 0.037 |
|
479 |
+
| 3.2255 | 93500 | 0.0389 |
|
480 |
+
| 3.2427 | 94000 | 0.0512 |
|
481 |
+
| 3.2600 | 94500 | 0.0451 |
|
482 |
+
| 3.2772 | 95000 | 0.0583 |
|
483 |
+
| 3.2945 | 95500 | 0.0502 |
|
484 |
+
| 3.3117 | 96000 | 0.0407 |
|
485 |
+
| 3.3290 | 96500 | 0.0628 |
|
486 |
+
| 3.3462 | 97000 | 0.0434 |
|
487 |
+
| 3.3635 | 97500 | 0.0741 |
|
488 |
+
| 3.3807 | 98000 | 0.0318 |
|
489 |
+
| 3.3980 | 98500 | 0.0387 |
|
490 |
+
| 3.4152 | 99000 | 0.041 |
|
491 |
+
| 3.4325 | 99500 | 0.0429 |
|
492 |
+
| 3.4497 | 100000 | 0.0514 |
|
493 |
+
| 3.4670 | 100500 | 0.0377 |
|
494 |
+
| 3.4842 | 101000 | 0.0355 |
|
495 |
+
| 3.5015 | 101500 | 0.043 |
|
496 |
+
| 3.5187 | 102000 | 0.029 |
|
497 |
+
| 3.5360 | 102500 | 0.047 |
|
498 |
+
| 3.5532 | 103000 | 0.0554 |
|
499 |
+
| 3.5705 | 103500 | 0.0385 |
|
500 |
+
| 3.5877 | 104000 | 0.0294 |
|
501 |
+
| 3.6050 | 104500 | 0.023 |
|
502 |
+
| 3.6222 | 105000 | 0.0381 |
|
503 |
+
| 3.6395 | 105500 | 0.0422 |
|
504 |
+
| 3.6567 | 106000 | 0.1091 |
|
505 |
+
| 3.6740 | 106500 | 0.0289 |
|
506 |
+
| 3.6912 | 107000 | 0.0276 |
|
507 |
+
| 3.7085 | 107500 | 0.0606 |
|
508 |
+
| 3.7257 | 108000 | 0.0402 |
|
509 |
+
| 3.7430 | 108500 | 0.0256 |
|
510 |
+
| 3.7602 | 109000 | 0.0279 |
|
511 |
+
| 3.7775 | 109500 | 0.0317 |
|
512 |
+
| 3.7947 | 110000 | 0.0303 |
|
513 |
+
| 3.8120 | 110500 | 0.0492 |
|
514 |
+
| 3.8292 | 111000 | 0.0239 |
|
515 |
+
| 3.8465 | 111500 | 0.0297 |
|
516 |
+
| 3.8637 | 112000 | 0.0293 |
|
517 |
+
| 3.8810 | 112500 | 0.0278 |
|
518 |
+
| 3.8982 | 113000 | 0.0134 |
|
519 |
+
| 3.9155 | 113500 | 0.0192 |
|
520 |
+
| 3.9327 | 114000 | 0.0235 |
|
521 |
+
| 3.9500 | 114500 | 0.0268 |
|
522 |
+
| 3.9672 | 115000 | 0.022 |
|
523 |
+
| 3.9845 | 115500 | 0.0235 |
|
524 |
+
|
525 |
+
</details>
|
526 |
+
|
527 |
+
### Framework Versions
|
528 |
+
- Python: 3.9.19
|
529 |
+
- Sentence Transformers: 3.0.0
|
530 |
+
- Transformers: 4.41.2
|
531 |
+
- PyTorch: 2.3.0+cu121
|
532 |
+
- Accelerate: 0.30.1
|
533 |
+
- Datasets: 2.19.1
|
534 |
+
- Tokenizers: 0.19.1
|
535 |
+
|
536 |
+
## Citation
|
537 |
+
|
538 |
+
### BibTeX
|
539 |
+
|
540 |
+
#### Sentence Transformers
|
541 |
+
```bibtex
|
542 |
+
@inproceedings{reimers-2019-sentence-bert,
|
543 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
544 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
545 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
546 |
+
month = "11",
|
547 |
+
year = "2019",
|
548 |
+
publisher = "Association for Computational Linguistics",
|
549 |
+
url = "https://arxiv.org/abs/1908.10084",
|
550 |
+
}
|
551 |
+
```
|
552 |
+
|
553 |
+
#### MultipleNegativesRankingLoss
|
554 |
+
```bibtex
|
555 |
+
@misc{henderson2017efficient,
|
556 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
557 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
558 |
+
year={2017},
|
559 |
+
eprint={1705.00652},
|
560 |
+
archivePrefix={arXiv},
|
561 |
+
primaryClass={cs.CL}
|
562 |
+
}
|
563 |
+
```
|
564 |
+
|
565 |
+
<!--
|
566 |
+
## Glossary
|
567 |
+
|
568 |
+
*Clearly define terms in order to be accessible across audiences.*
|
569 |
+
-->
|
570 |
+
|
571 |
+
<!--
|
572 |
+
## Model Card Authors
|
573 |
+
|
574 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
575 |
+
-->
|
576 |
+
|
577 |
+
<!--
|
578 |
+
## Model Card Contact
|
579 |
+
|
580 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
581 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "jatinthakur/testing",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.40.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e66d1b5bd82f8def647cf5d5a6484645273959d88de4e18726cea4eb5710cfd0
|
3 |
+
size 90864192
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 250,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|