SwapnilVishwakarma commited on
Commit
a2f0f82
·
verified ·
1 Parent(s): 5dc44f9

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,581 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:100K<n<1M
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
11
+ widget:
12
+ - source_sentence: Adapter
13
+ sentences:
14
+ - Valved Tee Spring Adapter
15
+ - Os Cervical Dilator Set Teflon
16
+ - Alarm Belt Sensor Posey Up to Length
17
+ - source_sentence: Headboard
18
+ sentences:
19
+ - HeadBoard For Bed
20
+ - Transcend Stair Chair Footrest
21
+ - Heel Flotation Positioner
22
+ - source_sentence: Hose Barb
23
+ sentences:
24
+ - Hose Barb Omeda Vacuum
25
+ - Orthopedic Drape Pack Sterile
26
+ - Retractor Surgical Length Surgical Grade
27
+ - source_sentence: Upper Arm
28
+ sentences:
29
+ - Refurbished -Arm
30
+ - Post-Op Shoe -Large Unisex Black
31
+ - Calf Strap Kit For Walker Boot
32
+ - source_sentence: Bone Saw
33
+ sentences:
34
+ - Bone Saw Sklar Inch
35
+ - Mask Component Headgear Opus
36
+ - Biopsy Cassette Histosette Acetal Lilac
37
+ pipeline_tag: sentence-similarity
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) <!-- at revision 2430568290bb832d22ad5064f44dd86cf0240142 -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 384 tokens
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("sentence_transformers_model_id")
88
+ # Run inference
89
+ sentences = [
90
+ 'Bone Saw',
91
+ 'Bone Saw Sklar Inch',
92
+ 'Mask Component Headgear Opus',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 384]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 231,882 training samples
148
+ * Columns: <code>anchor</code> and <code>positive</code>
149
+ * Approximate statistics based on the first 1000 samples:
150
+ | | anchor | positive |
151
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
152
+ | type | string | string |
153
+ | details | <ul><li>min: 3 tokens</li><li>mean: 14.16 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.28 tokens</li><li>max: 53 tokens</li></ul> |
154
+ * Samples:
155
+ | anchor | positive |
156
+ |:--------------------------------------------------------------------------------|:------------------------------------------------------|
157
+ | <code>Biopsy Cassette Thermo Scientific Shandon Acetal Blue</code> | <code>Biopsy Cassette Blue Acetal</code> |
158
+ | <code>Tissue Cassette Thermo Scientific Shandon Acetal Fluorescent Green</code> | <code>Tissue Cassette Fluorescent Green Acetal</code> |
159
+ | <code>Tissue Cassette Thermo Scientific Shandon Acetal Fluorescent Pink</code> | <code>Tissue Cassette Fluorescent Pink Acetal</code> |
160
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
161
+ ```json
162
+ {
163
+ "scale": 20,
164
+ "similarity_fct": "cos_sim"
165
+ }
166
+ ```
167
+
168
+ ### Training Hyperparameters
169
+ #### Non-Default Hyperparameters
170
+
171
+ - `num_train_epochs`: 4
172
+ - `batch_sampler`: no_duplicates
173
+
174
+ #### All Hyperparameters
175
+ <details><summary>Click to expand</summary>
176
+
177
+ - `overwrite_output_dir`: False
178
+ - `do_predict`: False
179
+ - `eval_strategy`: no
180
+ - `prediction_loss_only`: True
181
+ - `per_device_train_batch_size`: 8
182
+ - `per_device_eval_batch_size`: 8
183
+ - `per_gpu_train_batch_size`: None
184
+ - `per_gpu_eval_batch_size`: None
185
+ - `gradient_accumulation_steps`: 1
186
+ - `eval_accumulation_steps`: None
187
+ - `learning_rate`: 5e-05
188
+ - `weight_decay`: 0.0
189
+ - `adam_beta1`: 0.9
190
+ - `adam_beta2`: 0.999
191
+ - `adam_epsilon`: 1e-08
192
+ - `max_grad_norm`: 1.0
193
+ - `num_train_epochs`: 4
194
+ - `max_steps`: -1
195
+ - `lr_scheduler_type`: linear
196
+ - `lr_scheduler_kwargs`: {}
197
+ - `warmup_ratio`: 0.0
198
+ - `warmup_steps`: 0
199
+ - `log_level`: passive
200
+ - `log_level_replica`: warning
201
+ - `log_on_each_node`: True
202
+ - `logging_nan_inf_filter`: True
203
+ - `save_safetensors`: True
204
+ - `save_on_each_node`: False
205
+ - `save_only_model`: False
206
+ - `restore_callback_states_from_checkpoint`: False
207
+ - `no_cuda`: False
208
+ - `use_cpu`: False
209
+ - `use_mps_device`: False
210
+ - `seed`: 42
211
+ - `data_seed`: None
212
+ - `jit_mode_eval`: False
213
+ - `use_ipex`: False
214
+ - `bf16`: False
215
+ - `fp16`: False
216
+ - `fp16_opt_level`: O1
217
+ - `half_precision_backend`: auto
218
+ - `bf16_full_eval`: False
219
+ - `fp16_full_eval`: False
220
+ - `tf32`: None
221
+ - `local_rank`: 0
222
+ - `ddp_backend`: None
223
+ - `tpu_num_cores`: None
224
+ - `tpu_metrics_debug`: False
225
+ - `debug`: []
226
+ - `dataloader_drop_last`: False
227
+ - `dataloader_num_workers`: 0
228
+ - `dataloader_prefetch_factor`: None
229
+ - `past_index`: -1
230
+ - `disable_tqdm`: False
231
+ - `remove_unused_columns`: True
232
+ - `label_names`: None
233
+ - `load_best_model_at_end`: False
234
+ - `ignore_data_skip`: False
235
+ - `fsdp`: []
236
+ - `fsdp_min_num_params`: 0
237
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
238
+ - `fsdp_transformer_layer_cls_to_wrap`: None
239
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
240
+ - `deepspeed`: None
241
+ - `label_smoothing_factor`: 0.0
242
+ - `optim`: adamw_torch
243
+ - `optim_args`: None
244
+ - `adafactor`: False
245
+ - `group_by_length`: False
246
+ - `length_column_name`: length
247
+ - `ddp_find_unused_parameters`: None
248
+ - `ddp_bucket_cap_mb`: None
249
+ - `ddp_broadcast_buffers`: False
250
+ - `dataloader_pin_memory`: True
251
+ - `dataloader_persistent_workers`: False
252
+ - `skip_memory_metrics`: True
253
+ - `use_legacy_prediction_loop`: False
254
+ - `push_to_hub`: False
255
+ - `resume_from_checkpoint`: None
256
+ - `hub_model_id`: None
257
+ - `hub_strategy`: every_save
258
+ - `hub_private_repo`: False
259
+ - `hub_always_push`: False
260
+ - `gradient_checkpointing`: False
261
+ - `gradient_checkpointing_kwargs`: None
262
+ - `include_inputs_for_metrics`: False
263
+ - `eval_do_concat_batches`: True
264
+ - `fp16_backend`: auto
265
+ - `push_to_hub_model_id`: None
266
+ - `push_to_hub_organization`: None
267
+ - `mp_parameters`:
268
+ - `auto_find_batch_size`: False
269
+ - `full_determinism`: False
270
+ - `torchdynamo`: None
271
+ - `ray_scope`: last
272
+ - `ddp_timeout`: 1800
273
+ - `torch_compile`: False
274
+ - `torch_compile_backend`: None
275
+ - `torch_compile_mode`: None
276
+ - `dispatch_batches`: None
277
+ - `split_batches`: None
278
+ - `include_tokens_per_second`: False
279
+ - `include_num_input_tokens_seen`: False
280
+ - `neftune_noise_alpha`: None
281
+ - `optim_target_modules`: None
282
+ - `batch_eval_metrics`: False
283
+ - `batch_sampler`: no_duplicates
284
+ - `multi_dataset_batch_sampler`: proportional
285
+
286
+ </details>
287
+
288
+ ### Training Logs
289
+ <details><summary>Click to expand</summary>
290
+
291
+ | Epoch | Step | Training Loss |
292
+ |:------:|:------:|:-------------:|
293
+ | 0.0172 | 500 | 0.1383 |
294
+ | 0.0345 | 1000 | 0.1183 |
295
+ | 0.0517 | 1500 | 0.1054 |
296
+ | 0.0690 | 2000 | 0.0727 |
297
+ | 0.0862 | 2500 | 0.0829 |
298
+ | 0.1035 | 3000 | 0.0559 |
299
+ | 0.1207 | 3500 | 0.1274 |
300
+ | 0.1380 | 4000 | 0.0587 |
301
+ | 0.1552 | 4500 | 0.0704 |
302
+ | 0.1725 | 5000 | 0.0863 |
303
+ | 0.1897 | 5500 | 0.0888 |
304
+ | 0.2070 | 6000 | 0.1099 |
305
+ | 0.2242 | 6500 | 0.1126 |
306
+ | 0.2415 | 7000 | 0.1192 |
307
+ | 0.2587 | 7500 | 0.1082 |
308
+ | 0.2760 | 8000 | 0.1069 |
309
+ | 0.2932 | 8500 | 0.1268 |
310
+ | 0.3105 | 9000 | 0.0913 |
311
+ | 0.3277 | 9500 | 0.1267 |
312
+ | 0.3450 | 10000 | 0.1156 |
313
+ | 0.3622 | 10500 | 0.1522 |
314
+ | 0.3795 | 11000 | 0.088 |
315
+ | 0.3967 | 11500 | 0.0906 |
316
+ | 0.4140 | 12000 | 0.0776 |
317
+ | 0.4312 | 12500 | 0.0956 |
318
+ | 0.4485 | 13000 | 0.1111 |
319
+ | 0.4657 | 13500 | 0.0889 |
320
+ | 0.4830 | 14000 | 0.0765 |
321
+ | 0.5002 | 14500 | 0.1162 |
322
+ | 0.5175 | 15000 | 0.0581 |
323
+ | 0.5347 | 15500 | 0.0831 |
324
+ | 0.5520 | 16000 | 0.0915 |
325
+ | 0.5692 | 16500 | 0.0623 |
326
+ | 0.5865 | 17000 | 0.0702 |
327
+ | 0.6037 | 17500 | 0.0447 |
328
+ | 0.6210 | 18000 | 0.0715 |
329
+ | 0.6382 | 18500 | 0.0749 |
330
+ | 0.6555 | 19000 | 0.3381 |
331
+ | 0.6727 | 19500 | 0.0749 |
332
+ | 0.6900 | 20000 | 0.0614 |
333
+ | 0.7072 | 20500 | 0.1093 |
334
+ | 0.7245 | 21000 | 0.0847 |
335
+ | 0.7417 | 21500 | 0.063 |
336
+ | 0.7590 | 22000 | 0.0657 |
337
+ | 0.7762 | 22500 | 0.061 |
338
+ | 0.7935 | 23000 | 0.0837 |
339
+ | 0.8107 | 23500 | 0.0989 |
340
+ | 0.8280 | 24000 | 0.0523 |
341
+ | 0.8452 | 24500 | 0.0817 |
342
+ | 0.8625 | 25000 | 0.0533 |
343
+ | 0.8797 | 25500 | 0.0584 |
344
+ | 0.8970 | 26000 | 0.0353 |
345
+ | 0.9142 | 26500 | 0.0146 |
346
+ | 0.9315 | 27000 | 0.0831 |
347
+ | 0.9487 | 27500 | 0.049 |
348
+ | 0.9660 | 28000 | 0.0741 |
349
+ | 0.9832 | 28500 | 0.0469 |
350
+ | 1.0004 | 29000 | 0.063 |
351
+ | 1.0177 | 29500 | 0.0846 |
352
+ | 1.0349 | 30000 | 0.058 |
353
+ | 1.0522 | 30500 | 0.0701 |
354
+ | 1.0694 | 31000 | 0.0451 |
355
+ | 1.0867 | 31500 | 0.0506 |
356
+ | 1.1039 | 32000 | 0.0311 |
357
+ | 1.1212 | 32500 | 0.0761 |
358
+ | 1.1384 | 33000 | 0.0356 |
359
+ | 1.1557 | 33500 | 0.0387 |
360
+ | 1.1729 | 34000 | 0.0532 |
361
+ | 1.1902 | 34500 | 0.0568 |
362
+ | 1.2074 | 35000 | 0.0654 |
363
+ | 1.2247 | 35500 | 0.0726 |
364
+ | 1.2419 | 36000 | 0.0839 |
365
+ | 1.2592 | 36500 | 0.0698 |
366
+ | 1.2764 | 37000 | 0.0824 |
367
+ | 1.2937 | 37500 | 0.0832 |
368
+ | 1.3109 | 38000 | 0.0622 |
369
+ | 1.3282 | 38500 | 0.0849 |
370
+ | 1.3454 | 39000 | 0.0724 |
371
+ | 1.3627 | 39500 | 0.1039 |
372
+ | 1.3799 | 40000 | 0.0581 |
373
+ | 1.3972 | 40500 | 0.0561 |
374
+ | 1.4144 | 41000 | 0.0666 |
375
+ | 1.4317 | 41500 | 0.0687 |
376
+ | 1.4489 | 42000 | 0.0793 |
377
+ | 1.4662 | 42500 | 0.0638 |
378
+ | 1.4834 | 43000 | 0.0544 |
379
+ | 1.5007 | 43500 | 0.0686 |
380
+ | 1.5179 | 44000 | 0.0408 |
381
+ | 1.5352 | 44500 | 0.0602 |
382
+ | 1.5524 | 45000 | 0.0663 |
383
+ | 1.5697 | 45500 | 0.0488 |
384
+ | 1.5869 | 46000 | 0.047 |
385
+ | 1.6042 | 46500 | 0.0326 |
386
+ | 1.6214 | 47000 | 0.0644 |
387
+ | 1.6387 | 47500 | 0.0582 |
388
+ | 1.6559 | 48000 | 0.2124 |
389
+ | 1.6732 | 48500 | 0.0482 |
390
+ | 1.6904 | 49000 | 0.0389 |
391
+ | 1.7077 | 49500 | 0.0847 |
392
+ | 1.7249 | 50000 | 0.0636 |
393
+ | 1.7422 | 50500 | 0.044 |
394
+ | 1.7594 | 51000 | 0.0403 |
395
+ | 1.7767 | 51500 | 0.0397 |
396
+ | 1.7939 | 52000 | 0.0545 |
397
+ | 1.8112 | 52500 | 0.0681 |
398
+ | 1.8284 | 53000 | 0.0422 |
399
+ | 1.8456 | 53500 | 0.0522 |
400
+ | 1.8629 | 54000 | 0.0394 |
401
+ | 1.8801 | 54500 | 0.041 |
402
+ | 1.8974 | 55000 | 0.0232 |
403
+ | 1.9146 | 55500 | 0.0176 |
404
+ | 1.9319 | 56000 | 0.0471 |
405
+ | 1.9491 | 56500 | 0.0337 |
406
+ | 1.9664 | 57000 | 0.0439 |
407
+ | 1.9836 | 57500 | 0.0321 |
408
+ | 2.0008 | 58000 | 0.0433 |
409
+ | 2.0181 | 58500 | 0.0672 |
410
+ | 2.0353 | 59000 | 0.0441 |
411
+ | 2.0526 | 59500 | 0.0459 |
412
+ | 2.0698 | 60000 | 0.0342 |
413
+ | 2.0871 | 60500 | 0.0369 |
414
+ | 2.1043 | 61000 | 0.0205 |
415
+ | 2.1216 | 61500 | 0.0605 |
416
+ | 2.1388 | 62000 | 0.0252 |
417
+ | 2.1561 | 62500 | 0.0276 |
418
+ | 2.1733 | 63000 | 0.0406 |
419
+ | 2.1906 | 63500 | 0.0451 |
420
+ | 2.2078 | 64000 | 0.0447 |
421
+ | 2.2251 | 64500 | 0.0523 |
422
+ | 2.2423 | 65000 | 0.062 |
423
+ | 2.2596 | 65500 | 0.0514 |
424
+ | 2.2768 | 66000 | 0.0677 |
425
+ | 2.2941 | 66500 | 0.0655 |
426
+ | 2.3113 | 67000 | 0.0494 |
427
+ | 2.3286 | 67500 | 0.0728 |
428
+ | 2.3458 | 68000 | 0.0585 |
429
+ | 2.3631 | 68500 | 0.0866 |
430
+ | 2.3803 | 69000 | 0.0409 |
431
+ | 2.3976 | 69500 | 0.0429 |
432
+ | 2.4148 | 70000 | 0.0534 |
433
+ | 2.4321 | 70500 | 0.0542 |
434
+ | 2.4493 | 71000 | 0.0563 |
435
+ | 2.4666 | 71500 | 0.0488 |
436
+ | 2.4838 | 72000 | 0.0401 |
437
+ | 2.5011 | 72500 | 0.0575 |
438
+ | 2.5183 | 73000 | 0.0344 |
439
+ | 2.5356 | 73500 | 0.052 |
440
+ | 2.5528 | 74000 | 0.0569 |
441
+ | 2.5701 | 74500 | 0.0408 |
442
+ | 2.5873 | 75000 | 0.0384 |
443
+ | 2.6046 | 75500 | 0.0281 |
444
+ | 2.6218 | 76000 | 0.0447 |
445
+ | 2.6391 | 76500 | 0.0495 |
446
+ | 2.6563 | 77000 | 0.1492 |
447
+ | 2.6736 | 77500 | 0.0314 |
448
+ | 2.6908 | 78000 | 0.0314 |
449
+ | 2.7081 | 78500 | 0.0691 |
450
+ | 2.7253 | 79000 | 0.0496 |
451
+ | 2.7426 | 79500 | 0.0309 |
452
+ | 2.7598 | 80000 | 0.0323 |
453
+ | 2.7771 | 80500 | 0.0357 |
454
+ | 2.7943 | 81000 | 0.0387 |
455
+ | 2.8116 | 81500 | 0.0544 |
456
+ | 2.8288 | 82000 | 0.0297 |
457
+ | 2.8461 | 82500 | 0.0384 |
458
+ | 2.8633 | 83000 | 0.0332 |
459
+ | 2.8806 | 83500 | 0.031 |
460
+ | 2.8978 | 84000 | 0.017 |
461
+ | 2.9151 | 84500 | 0.0223 |
462
+ | 2.9323 | 85000 | 0.0271 |
463
+ | 2.9496 | 85500 | 0.0298 |
464
+ | 2.9668 | 86000 | 0.0297 |
465
+ | 2.9841 | 86500 | 0.026 |
466
+ | 3.0012 | 87000 | 0.0266 |
467
+ | 3.0185 | 87500 | 0.0531 |
468
+ | 3.0357 | 88000 | 0.0342 |
469
+ | 3.0530 | 88500 | 0.039 |
470
+ | 3.0702 | 89000 | 0.0263 |
471
+ | 3.0875 | 89500 | 0.0288 |
472
+ | 3.1047 | 90000 | 0.0158 |
473
+ | 3.1220 | 90500 | 0.0484 |
474
+ | 3.1392 | 91000 | 0.0179 |
475
+ | 3.1565 | 91500 | 0.0215 |
476
+ | 3.1737 | 92000 | 0.0316 |
477
+ | 3.1910 | 92500 | 0.0395 |
478
+ | 3.2082 | 93000 | 0.037 |
479
+ | 3.2255 | 93500 | 0.0389 |
480
+ | 3.2427 | 94000 | 0.0512 |
481
+ | 3.2600 | 94500 | 0.0451 |
482
+ | 3.2772 | 95000 | 0.0583 |
483
+ | 3.2945 | 95500 | 0.0502 |
484
+ | 3.3117 | 96000 | 0.0407 |
485
+ | 3.3290 | 96500 | 0.0628 |
486
+ | 3.3462 | 97000 | 0.0434 |
487
+ | 3.3635 | 97500 | 0.0741 |
488
+ | 3.3807 | 98000 | 0.0318 |
489
+ | 3.3980 | 98500 | 0.0387 |
490
+ | 3.4152 | 99000 | 0.041 |
491
+ | 3.4325 | 99500 | 0.0429 |
492
+ | 3.4497 | 100000 | 0.0514 |
493
+ | 3.4670 | 100500 | 0.0377 |
494
+ | 3.4842 | 101000 | 0.0355 |
495
+ | 3.5015 | 101500 | 0.043 |
496
+ | 3.5187 | 102000 | 0.029 |
497
+ | 3.5360 | 102500 | 0.047 |
498
+ | 3.5532 | 103000 | 0.0554 |
499
+ | 3.5705 | 103500 | 0.0385 |
500
+ | 3.5877 | 104000 | 0.0294 |
501
+ | 3.6050 | 104500 | 0.023 |
502
+ | 3.6222 | 105000 | 0.0381 |
503
+ | 3.6395 | 105500 | 0.0422 |
504
+ | 3.6567 | 106000 | 0.1091 |
505
+ | 3.6740 | 106500 | 0.0289 |
506
+ | 3.6912 | 107000 | 0.0276 |
507
+ | 3.7085 | 107500 | 0.0606 |
508
+ | 3.7257 | 108000 | 0.0402 |
509
+ | 3.7430 | 108500 | 0.0256 |
510
+ | 3.7602 | 109000 | 0.0279 |
511
+ | 3.7775 | 109500 | 0.0317 |
512
+ | 3.7947 | 110000 | 0.0303 |
513
+ | 3.8120 | 110500 | 0.0492 |
514
+ | 3.8292 | 111000 | 0.0239 |
515
+ | 3.8465 | 111500 | 0.0297 |
516
+ | 3.8637 | 112000 | 0.0293 |
517
+ | 3.8810 | 112500 | 0.0278 |
518
+ | 3.8982 | 113000 | 0.0134 |
519
+ | 3.9155 | 113500 | 0.0192 |
520
+ | 3.9327 | 114000 | 0.0235 |
521
+ | 3.9500 | 114500 | 0.0268 |
522
+ | 3.9672 | 115000 | 0.022 |
523
+ | 3.9845 | 115500 | 0.0235 |
524
+
525
+ </details>
526
+
527
+ ### Framework Versions
528
+ - Python: 3.9.19
529
+ - Sentence Transformers: 3.0.0
530
+ - Transformers: 4.41.2
531
+ - PyTorch: 2.3.0+cu121
532
+ - Accelerate: 0.30.1
533
+ - Datasets: 2.19.1
534
+ - Tokenizers: 0.19.1
535
+
536
+ ## Citation
537
+
538
+ ### BibTeX
539
+
540
+ #### Sentence Transformers
541
+ ```bibtex
542
+ @inproceedings{reimers-2019-sentence-bert,
543
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
544
+ author = "Reimers, Nils and Gurevych, Iryna",
545
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
546
+ month = "11",
547
+ year = "2019",
548
+ publisher = "Association for Computational Linguistics",
549
+ url = "https://arxiv.org/abs/1908.10084",
550
+ }
551
+ ```
552
+
553
+ #### MultipleNegativesRankingLoss
554
+ ```bibtex
555
+ @misc{henderson2017efficient,
556
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
557
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
558
+ year={2017},
559
+ eprint={1705.00652},
560
+ archivePrefix={arXiv},
561
+ primaryClass={cs.CL}
562
+ }
563
+ ```
564
+
565
+ <!--
566
+ ## Glossary
567
+
568
+ *Clearly define terms in order to be accessible across audiences.*
569
+ -->
570
+
571
+ <!--
572
+ ## Model Card Authors
573
+
574
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
575
+ -->
576
+
577
+ <!--
578
+ ## Model Card Contact
579
+
580
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
581
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jatinthakur/testing",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e66d1b5bd82f8def647cf5d5a6484645273959d88de4e18726cea4eb5710cfd0
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 250,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff