Sunshine279 commited on
Commit
b3642b2
·
verified ·
1 Parent(s): d4f0e5e

上传 README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Sunshine279/gammaPO-llama-3-8b-instruct
3
+ tags:
4
+ - alignment-handbook
5
+ - generated_from_trainer
6
+ datasets:
7
+ - princeton-nlp/llama3-ultrafeedback-armorm
8
+ model-index:
9
+ - name: Sunshine279/gammaPO-llama-3-8b-instruct
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](None)
17
+ # llama-3-8b-it-gmsimpo-beta10-gm0.4-tau10-lr1e-6
18
+
19
+ This model is a fine-tuned version of [Sunshine279/gammaPO-llama-3-8b-instruct](https://huggingface.co/Sunshine279/gammaPO-llama-3-8b-instruct) on the princeton-nlp/llama3-ultrafeedback-armorm dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1389
22
+ - Rewards/chosen: -20.8453
23
+ - Rewards/rejected: -29.4063
24
+ - Rewards/accuracies: 0.8679
25
+ - Rewards/margins: 8.5610
26
+ - Logps/rejected: -2.9406
27
+ - Logps/chosen: -2.0845
28
+ - Logits/rejected: -1.7197
29
+ - Logits/chosen: -1.7101
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 1e-06
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 4
51
+ - seed: 42
52
+ - distributed_type: multi-GPU
53
+ - num_devices: 4
54
+ - gradient_accumulation_steps: 16
55
+ - total_train_batch_size: 128
56
+ - total_eval_batch_size: 16
57
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
58
+ - lr_scheduler_type: cosine
59
+ - lr_scheduler_warmup_ratio: 0.1
60
+ - num_epochs: 1
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
65
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
66
+ | 1.1544 | 0.8550 | 400 | 1.1389 | -20.8453 | -29.4063 | 0.8679 | 8.5610 | -2.9406 | -2.0845 | -1.7197 | -1.7101 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.42.4
72
+ - Pytorch 2.3.0+cu121
73
+ - Datasets 2.20.0
74
+ - Tokenizers 0.19.1