Delete pixcell_transformer_2d.py
Browse files- pixcell_transformer_2d.py +0 -676
pixcell_transformer_2d.py
DELETED
@@ -1,676 +0,0 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
from typing import Any, Dict, Optional, Union
|
15 |
-
|
16 |
-
import torch
|
17 |
-
from torch import nn
|
18 |
-
|
19 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
20 |
-
from diffusers.utils import is_torch_version, logging
|
21 |
-
from diffusers.models.attention import BasicTransformerBlock
|
22 |
-
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0
|
23 |
-
from diffusers.models.embeddings import PatchEmbed
|
24 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
25 |
-
from diffusers.models.modeling_utils import ModelMixin
|
26 |
-
from diffusers.models.normalization import AdaLayerNormSingle
|
27 |
-
from diffusers.models.activations import deprecate, FP32SiLU
|
28 |
-
|
29 |
-
|
30 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
31 |
-
|
32 |
-
|
33 |
-
# PixCell UNI conditioning
|
34 |
-
def pixcell_get_2d_sincos_pos_embed(
|
35 |
-
embed_dim,
|
36 |
-
grid_size,
|
37 |
-
cls_token=False,
|
38 |
-
extra_tokens=0,
|
39 |
-
interpolation_scale=1.0,
|
40 |
-
base_size=16,
|
41 |
-
device: Optional[torch.device] = None,
|
42 |
-
phase=0,
|
43 |
-
output_type: str = "np",
|
44 |
-
):
|
45 |
-
"""
|
46 |
-
Creates 2D sinusoidal positional embeddings.
|
47 |
-
|
48 |
-
Args:
|
49 |
-
embed_dim (`int`):
|
50 |
-
The embedding dimension.
|
51 |
-
grid_size (`int`):
|
52 |
-
The size of the grid height and width.
|
53 |
-
cls_token (`bool`, defaults to `False`):
|
54 |
-
Whether or not to add a classification token.
|
55 |
-
extra_tokens (`int`, defaults to `0`):
|
56 |
-
The number of extra tokens to add.
|
57 |
-
interpolation_scale (`float`, defaults to `1.0`):
|
58 |
-
The scale of the interpolation.
|
59 |
-
|
60 |
-
Returns:
|
61 |
-
pos_embed (`torch.Tensor`):
|
62 |
-
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
|
63 |
-
embed_dim]` if using cls_token
|
64 |
-
"""
|
65 |
-
if output_type == "np":
|
66 |
-
deprecation_message = (
|
67 |
-
"`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
|
68 |
-
" `from_numpy` is no longer required."
|
69 |
-
" Pass `output_type='pt' to use the new version now."
|
70 |
-
)
|
71 |
-
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
72 |
-
raise ValueError("Not supported")
|
73 |
-
if isinstance(grid_size, int):
|
74 |
-
grid_size = (grid_size, grid_size)
|
75 |
-
|
76 |
-
grid_h = (
|
77 |
-
torch.arange(grid_size[0], device=device, dtype=torch.float32)
|
78 |
-
/ (grid_size[0] / base_size)
|
79 |
-
/ interpolation_scale
|
80 |
-
)
|
81 |
-
grid_w = (
|
82 |
-
torch.arange(grid_size[1], device=device, dtype=torch.float32)
|
83 |
-
/ (grid_size[1] / base_size)
|
84 |
-
/ interpolation_scale
|
85 |
-
)
|
86 |
-
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
|
87 |
-
grid = torch.stack(grid, dim=0)
|
88 |
-
|
89 |
-
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
|
90 |
-
pos_embed = pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=phase, output_type=output_type)
|
91 |
-
if cls_token and extra_tokens > 0:
|
92 |
-
pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
|
93 |
-
return pos_embed
|
94 |
-
|
95 |
-
|
96 |
-
def pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=0, output_type="np"):
|
97 |
-
r"""
|
98 |
-
This function generates 2D sinusoidal positional embeddings from a grid.
|
99 |
-
|
100 |
-
Args:
|
101 |
-
embed_dim (`int`): The embedding dimension.
|
102 |
-
grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.
|
103 |
-
|
104 |
-
Returns:
|
105 |
-
`torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
|
106 |
-
"""
|
107 |
-
if output_type == "np":
|
108 |
-
deprecation_message = (
|
109 |
-
"`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
110 |
-
" `from_numpy` is no longer required."
|
111 |
-
" Pass `output_type='pt' to use the new version now."
|
112 |
-
)
|
113 |
-
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
114 |
-
raise ValueError("Not supported")
|
115 |
-
if embed_dim % 2 != 0:
|
116 |
-
raise ValueError("embed_dim must be divisible by 2")
|
117 |
-
|
118 |
-
# use half of dimensions to encode grid_h
|
119 |
-
emb_h = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], phase=phase, output_type=output_type) # (H*W, D/2)
|
120 |
-
emb_w = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], phase=phase, output_type=output_type) # (H*W, D/2)
|
121 |
-
|
122 |
-
emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D)
|
123 |
-
return emb
|
124 |
-
|
125 |
-
|
126 |
-
def pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim, pos, phase=0, output_type="np"):
|
127 |
-
"""
|
128 |
-
This function generates 1D positional embeddings from a grid.
|
129 |
-
|
130 |
-
Args:
|
131 |
-
embed_dim (`int`): The embedding dimension `D`
|
132 |
-
pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`
|
133 |
-
|
134 |
-
Returns:
|
135 |
-
`torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
|
136 |
-
"""
|
137 |
-
if output_type == "np":
|
138 |
-
deprecation_message = (
|
139 |
-
"`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
140 |
-
" `from_numpy` is no longer required."
|
141 |
-
" Pass `output_type='pt' to use the new version now."
|
142 |
-
)
|
143 |
-
deprecate("output_type=='np'", "0.34.0", deprecation_message, standard_warn=False)
|
144 |
-
raise ValueError("Not supported")
|
145 |
-
if embed_dim % 2 != 0:
|
146 |
-
raise ValueError("embed_dim must be divisible by 2")
|
147 |
-
|
148 |
-
omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
|
149 |
-
omega /= embed_dim / 2.0
|
150 |
-
omega = 1.0 / 10000**omega # (D/2,)
|
151 |
-
|
152 |
-
pos = pos.reshape(-1) + phase # (M,)
|
153 |
-
out = torch.outer(pos, omega) # (M, D/2), outer product
|
154 |
-
|
155 |
-
emb_sin = torch.sin(out) # (M, D/2)
|
156 |
-
emb_cos = torch.cos(out) # (M, D/2)
|
157 |
-
|
158 |
-
emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D)
|
159 |
-
return emb
|
160 |
-
|
161 |
-
|
162 |
-
class PixcellUNIProjection(nn.Module):
|
163 |
-
"""
|
164 |
-
Projects UNI embeddings. Also handles dropout for classifier-free guidance.
|
165 |
-
|
166 |
-
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
167 |
-
"""
|
168 |
-
|
169 |
-
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", num_tokens=1):
|
170 |
-
super().__init__()
|
171 |
-
if out_features is None:
|
172 |
-
out_features = hidden_size
|
173 |
-
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
|
174 |
-
if act_fn == "gelu_tanh":
|
175 |
-
self.act_1 = nn.GELU(approximate="tanh")
|
176 |
-
elif act_fn == "silu":
|
177 |
-
self.act_1 = nn.SiLU()
|
178 |
-
elif act_fn == "silu_fp32":
|
179 |
-
self.act_1 = FP32SiLU()
|
180 |
-
else:
|
181 |
-
raise ValueError(f"Unknown activation function: {act_fn}")
|
182 |
-
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
|
183 |
-
|
184 |
-
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features ** 0.5))
|
185 |
-
|
186 |
-
def forward(self, caption):
|
187 |
-
hidden_states = self.linear_1(caption)
|
188 |
-
hidden_states = self.act_1(hidden_states)
|
189 |
-
hidden_states = self.linear_2(hidden_states)
|
190 |
-
return hidden_states
|
191 |
-
|
192 |
-
class UNIPosEmbed(nn.Module):
|
193 |
-
"""
|
194 |
-
Adds positional embeddings to the UNI conditions.
|
195 |
-
|
196 |
-
Args:
|
197 |
-
height (`int`, defaults to `224`): The height of the image.
|
198 |
-
width (`int`, defaults to `224`): The width of the image.
|
199 |
-
patch_size (`int`, defaults to `16`): The size of the patches.
|
200 |
-
in_channels (`int`, defaults to `3`): The number of input channels.
|
201 |
-
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
|
202 |
-
layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
|
203 |
-
flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
|
204 |
-
bias (`bool`, defaults to `True`): Whether or not to use bias.
|
205 |
-
interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
|
206 |
-
pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
|
207 |
-
pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
|
208 |
-
"""
|
209 |
-
|
210 |
-
def __init__(
|
211 |
-
self,
|
212 |
-
height=1,
|
213 |
-
width=1,
|
214 |
-
base_size=16,
|
215 |
-
embed_dim=768,
|
216 |
-
interpolation_scale=1,
|
217 |
-
pos_embed_type="sincos",
|
218 |
-
):
|
219 |
-
super().__init__()
|
220 |
-
|
221 |
-
num_embeds = height*width
|
222 |
-
grid_size = int(num_embeds ** 0.5)
|
223 |
-
|
224 |
-
if pos_embed_type == "sincos":
|
225 |
-
y_pos_embed = pixcell_get_2d_sincos_pos_embed(
|
226 |
-
embed_dim,
|
227 |
-
grid_size,
|
228 |
-
base_size=base_size,
|
229 |
-
interpolation_scale=interpolation_scale,
|
230 |
-
output_type="pt",
|
231 |
-
phase = base_size // num_embeds
|
232 |
-
)
|
233 |
-
self.register_buffer("y_pos_embed", y_pos_embed.float().unsqueeze(0))
|
234 |
-
else:
|
235 |
-
raise ValueError("`pos_embed_type` not supported")
|
236 |
-
|
237 |
-
def forward(self, uni_embeds):
|
238 |
-
return (uni_embeds + self.y_pos_embed).to(uni_embeds.dtype)
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
class PixCellTransformer2DModel(ModelMixin, ConfigMixin):
|
243 |
-
r"""
|
244 |
-
A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
|
245 |
-
https://arxiv.org/abs/2403.04692). Modified for the pathology domain.
|
246 |
-
|
247 |
-
Parameters:
|
248 |
-
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
|
249 |
-
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
|
250 |
-
in_channels (int, defaults to 4): The number of channels in the input.
|
251 |
-
out_channels (int, optional):
|
252 |
-
The number of channels in the output. Specify this parameter if the output channel number differs from the
|
253 |
-
input.
|
254 |
-
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
|
255 |
-
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
|
256 |
-
norm_num_groups (int, optional, defaults to 32):
|
257 |
-
Number of groups for group normalization within Transformer blocks.
|
258 |
-
cross_attention_dim (int, optional):
|
259 |
-
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
|
260 |
-
attention_bias (bool, optional, defaults to True):
|
261 |
-
Configure if the Transformer blocks' attention should contain a bias parameter.
|
262 |
-
sample_size (int, defaults to 128):
|
263 |
-
The width of the latent images. This parameter is fixed during training.
|
264 |
-
patch_size (int, defaults to 2):
|
265 |
-
Size of the patches the model processes, relevant for architectures working on non-sequential data.
|
266 |
-
activation_fn (str, optional, defaults to "gelu-approximate"):
|
267 |
-
Activation function to use in feed-forward networks within Transformer blocks.
|
268 |
-
num_embeds_ada_norm (int, optional, defaults to 1000):
|
269 |
-
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
|
270 |
-
inference.
|
271 |
-
upcast_attention (bool, optional, defaults to False):
|
272 |
-
If true, upcasts the attention mechanism dimensions for potentially improved performance.
|
273 |
-
norm_type (str, optional, defaults to "ada_norm_zero"):
|
274 |
-
Specifies the type of normalization used, can be 'ada_norm_zero'.
|
275 |
-
norm_elementwise_affine (bool, optional, defaults to False):
|
276 |
-
If true, enables element-wise affine parameters in the normalization layers.
|
277 |
-
norm_eps (float, optional, defaults to 1e-6):
|
278 |
-
A small constant added to the denominator in normalization layers to prevent division by zero.
|
279 |
-
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
|
280 |
-
use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
|
281 |
-
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
|
282 |
-
caption_channels (int, optional, defaults to None):
|
283 |
-
Number of channels to use for projecting the caption embeddings.
|
284 |
-
use_linear_projection (bool, optional, defaults to False):
|
285 |
-
Deprecated argument. Will be removed in a future version.
|
286 |
-
num_vector_embeds (bool, optional, defaults to False):
|
287 |
-
Deprecated argument. Will be removed in a future version.
|
288 |
-
"""
|
289 |
-
|
290 |
-
_supports_gradient_checkpointing = True
|
291 |
-
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
|
292 |
-
|
293 |
-
@register_to_config
|
294 |
-
def __init__(
|
295 |
-
self,
|
296 |
-
num_attention_heads: int = 16,
|
297 |
-
attention_head_dim: int = 72,
|
298 |
-
in_channels: int = 4,
|
299 |
-
out_channels: Optional[int] = 8,
|
300 |
-
num_layers: int = 28,
|
301 |
-
dropout: float = 0.0,
|
302 |
-
norm_num_groups: int = 32,
|
303 |
-
cross_attention_dim: Optional[int] = 1152,
|
304 |
-
attention_bias: bool = True,
|
305 |
-
sample_size: int = 128,
|
306 |
-
patch_size: int = 2,
|
307 |
-
activation_fn: str = "gelu-approximate",
|
308 |
-
num_embeds_ada_norm: Optional[int] = 1000,
|
309 |
-
upcast_attention: bool = False,
|
310 |
-
norm_type: str = "ada_norm_single",
|
311 |
-
norm_elementwise_affine: bool = False,
|
312 |
-
norm_eps: float = 1e-6,
|
313 |
-
interpolation_scale: Optional[int] = None,
|
314 |
-
use_additional_conditions: Optional[bool] = None,
|
315 |
-
caption_channels: Optional[int] = None,
|
316 |
-
caption_num_tokens: int = 1,
|
317 |
-
attention_type: Optional[str] = "default",
|
318 |
-
):
|
319 |
-
super().__init__()
|
320 |
-
|
321 |
-
# Validate inputs.
|
322 |
-
if norm_type != "ada_norm_single":
|
323 |
-
raise NotImplementedError(
|
324 |
-
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
325 |
-
)
|
326 |
-
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
|
327 |
-
raise ValueError(
|
328 |
-
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
329 |
-
)
|
330 |
-
|
331 |
-
# Set some common variables used across the board.
|
332 |
-
self.attention_head_dim = attention_head_dim
|
333 |
-
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
334 |
-
self.out_channels = in_channels if out_channels is None else out_channels
|
335 |
-
if use_additional_conditions is None:
|
336 |
-
if sample_size == 128:
|
337 |
-
use_additional_conditions = True
|
338 |
-
else:
|
339 |
-
use_additional_conditions = False
|
340 |
-
self.use_additional_conditions = use_additional_conditions
|
341 |
-
|
342 |
-
self.gradient_checkpointing = False
|
343 |
-
|
344 |
-
# 2. Initialize the position embedding and transformer blocks.
|
345 |
-
self.height = self.config.sample_size
|
346 |
-
self.width = self.config.sample_size
|
347 |
-
|
348 |
-
interpolation_scale = (
|
349 |
-
self.config.interpolation_scale
|
350 |
-
if self.config.interpolation_scale is not None
|
351 |
-
else max(self.config.sample_size // 64, 1)
|
352 |
-
)
|
353 |
-
self.pos_embed = PatchEmbed(
|
354 |
-
height=self.config.sample_size,
|
355 |
-
width=self.config.sample_size,
|
356 |
-
patch_size=self.config.patch_size,
|
357 |
-
in_channels=self.config.in_channels,
|
358 |
-
embed_dim=self.inner_dim,
|
359 |
-
interpolation_scale=interpolation_scale,
|
360 |
-
)
|
361 |
-
|
362 |
-
self.transformer_blocks = nn.ModuleList(
|
363 |
-
[
|
364 |
-
BasicTransformerBlock(
|
365 |
-
self.inner_dim,
|
366 |
-
self.config.num_attention_heads,
|
367 |
-
self.config.attention_head_dim,
|
368 |
-
dropout=self.config.dropout,
|
369 |
-
cross_attention_dim=self.config.cross_attention_dim,
|
370 |
-
activation_fn=self.config.activation_fn,
|
371 |
-
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
372 |
-
attention_bias=self.config.attention_bias,
|
373 |
-
upcast_attention=self.config.upcast_attention,
|
374 |
-
norm_type=norm_type,
|
375 |
-
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
376 |
-
norm_eps=self.config.norm_eps,
|
377 |
-
attention_type=self.config.attention_type,
|
378 |
-
)
|
379 |
-
for _ in range(self.config.num_layers)
|
380 |
-
]
|
381 |
-
)
|
382 |
-
|
383 |
-
# Initialize the positional embedding for the conditions for >1 UNI embeddings
|
384 |
-
if self.config.caption_num_tokens == 1:
|
385 |
-
self.y_pos_embed = None
|
386 |
-
else:
|
387 |
-
# 1:1 aspect ratio
|
388 |
-
self.uni_height = int(self.config.caption_num_tokens ** 0.5)
|
389 |
-
self.uni_width = int(self.config.caption_num_tokens ** 0.5)
|
390 |
-
|
391 |
-
self.y_pos_embed = UNIPosEmbed(
|
392 |
-
height=self.uni_height,
|
393 |
-
width=self.uni_width,
|
394 |
-
base_size=self.config.sample_size // self.config.patch_size,
|
395 |
-
embed_dim=self.config.caption_channels,
|
396 |
-
interpolation_scale=2, # Should this be fixed?
|
397 |
-
pos_embed_type="sincos", # This is fixed
|
398 |
-
)
|
399 |
-
|
400 |
-
# 3. Output blocks.
|
401 |
-
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
402 |
-
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
403 |
-
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
|
404 |
-
|
405 |
-
self.adaln_single = AdaLayerNormSingle(
|
406 |
-
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
407 |
-
)
|
408 |
-
self.caption_projection = None
|
409 |
-
if self.config.caption_channels is not None:
|
410 |
-
self.caption_projection = PixcellUNIProjection(
|
411 |
-
in_features=self.config.caption_channels, hidden_size=self.inner_dim, num_tokens=self.config.caption_num_tokens,
|
412 |
-
)
|
413 |
-
|
414 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
415 |
-
if hasattr(module, "gradient_checkpointing"):
|
416 |
-
module.gradient_checkpointing = value
|
417 |
-
|
418 |
-
@property
|
419 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
420 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
421 |
-
r"""
|
422 |
-
Returns:
|
423 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
424 |
-
indexed by its weight name.
|
425 |
-
"""
|
426 |
-
# set recursively
|
427 |
-
processors = {}
|
428 |
-
|
429 |
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
430 |
-
if hasattr(module, "get_processor"):
|
431 |
-
processors[f"{name}.processor"] = module.get_processor()
|
432 |
-
|
433 |
-
for sub_name, child in module.named_children():
|
434 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
435 |
-
|
436 |
-
return processors
|
437 |
-
|
438 |
-
for name, module in self.named_children():
|
439 |
-
fn_recursive_add_processors(name, module, processors)
|
440 |
-
|
441 |
-
return processors
|
442 |
-
|
443 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
444 |
-
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
445 |
-
r"""
|
446 |
-
Sets the attention processor to use to compute attention.
|
447 |
-
|
448 |
-
Parameters:
|
449 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
450 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
451 |
-
for **all** `Attention` layers.
|
452 |
-
|
453 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
454 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
455 |
-
|
456 |
-
"""
|
457 |
-
count = len(self.attn_processors.keys())
|
458 |
-
|
459 |
-
if isinstance(processor, dict) and len(processor) != count:
|
460 |
-
raise ValueError(
|
461 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
462 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
463 |
-
)
|
464 |
-
|
465 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
466 |
-
if hasattr(module, "set_processor"):
|
467 |
-
if not isinstance(processor, dict):
|
468 |
-
module.set_processor(processor)
|
469 |
-
else:
|
470 |
-
module.set_processor(processor.pop(f"{name}.processor"))
|
471 |
-
|
472 |
-
for sub_name, child in module.named_children():
|
473 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
474 |
-
|
475 |
-
for name, module in self.named_children():
|
476 |
-
fn_recursive_attn_processor(name, module, processor)
|
477 |
-
|
478 |
-
def set_default_attn_processor(self):
|
479 |
-
"""
|
480 |
-
Disables custom attention processors and sets the default attention implementation.
|
481 |
-
|
482 |
-
Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
|
483 |
-
"""
|
484 |
-
self.set_attn_processor(AttnProcessor())
|
485 |
-
|
486 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
487 |
-
def fuse_qkv_projections(self):
|
488 |
-
"""
|
489 |
-
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
490 |
-
are fused. For cross-attention modules, key and value projection matrices are fused.
|
491 |
-
|
492 |
-
<Tip warning={true}>
|
493 |
-
|
494 |
-
This API is 🧪 experimental.
|
495 |
-
|
496 |
-
</Tip>
|
497 |
-
"""
|
498 |
-
self.original_attn_processors = None
|
499 |
-
|
500 |
-
for _, attn_processor in self.attn_processors.items():
|
501 |
-
if "Added" in str(attn_processor.__class__.__name__):
|
502 |
-
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
503 |
-
|
504 |
-
self.original_attn_processors = self.attn_processors
|
505 |
-
|
506 |
-
for module in self.modules():
|
507 |
-
if isinstance(module, Attention):
|
508 |
-
module.fuse_projections(fuse=True)
|
509 |
-
|
510 |
-
self.set_attn_processor(FusedAttnProcessor2_0())
|
511 |
-
|
512 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
513 |
-
def unfuse_qkv_projections(self):
|
514 |
-
"""Disables the fused QKV projection if enabled.
|
515 |
-
|
516 |
-
<Tip warning={true}>
|
517 |
-
|
518 |
-
This API is 🧪 experimental.
|
519 |
-
|
520 |
-
</Tip>
|
521 |
-
|
522 |
-
"""
|
523 |
-
if self.original_attn_processors is not None:
|
524 |
-
self.set_attn_processor(self.original_attn_processors)
|
525 |
-
|
526 |
-
def forward(
|
527 |
-
self,
|
528 |
-
hidden_states: torch.Tensor,
|
529 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
530 |
-
timestep: Optional[torch.LongTensor] = None,
|
531 |
-
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
532 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
533 |
-
attention_mask: Optional[torch.Tensor] = None,
|
534 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
535 |
-
return_dict: bool = True,
|
536 |
-
):
|
537 |
-
"""
|
538 |
-
The [`PixCellTransformer2DModel`] forward method.
|
539 |
-
|
540 |
-
Args:
|
541 |
-
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
542 |
-
Input `hidden_states`.
|
543 |
-
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
544 |
-
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
545 |
-
self-attention.
|
546 |
-
timestep (`torch.LongTensor`, *optional*):
|
547 |
-
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
548 |
-
added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
|
549 |
-
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
550 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
551 |
-
`self.processor` in
|
552 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
553 |
-
attention_mask ( `torch.Tensor`, *optional*):
|
554 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
555 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
556 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
557 |
-
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
558 |
-
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
559 |
-
|
560 |
-
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
561 |
-
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
562 |
-
|
563 |
-
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
564 |
-
above. This bias will be added to the cross-attention scores.
|
565 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
566 |
-
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
567 |
-
tuple.
|
568 |
-
|
569 |
-
Returns:
|
570 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
571 |
-
`tuple` where the first element is the sample tensor.
|
572 |
-
"""
|
573 |
-
if self.use_additional_conditions and added_cond_kwargs is None:
|
574 |
-
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
|
575 |
-
|
576 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
577 |
-
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
578 |
-
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
579 |
-
# expects mask of shape:
|
580 |
-
# [batch, key_tokens]
|
581 |
-
# adds singleton query_tokens dimension:
|
582 |
-
# [batch, 1, key_tokens]
|
583 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
584 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
585 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
586 |
-
if attention_mask is not None and attention_mask.ndim == 2:
|
587 |
-
# assume that mask is expressed as:
|
588 |
-
# (1 = keep, 0 = discard)
|
589 |
-
# convert mask into a bias that can be added to attention scores:
|
590 |
-
# (keep = +0, discard = -10000.0)
|
591 |
-
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
592 |
-
attention_mask = attention_mask.unsqueeze(1)
|
593 |
-
|
594 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
595 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
596 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
597 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
598 |
-
|
599 |
-
# 1. Input
|
600 |
-
batch_size = hidden_states.shape[0]
|
601 |
-
height, width = (
|
602 |
-
hidden_states.shape[-2] // self.config.patch_size,
|
603 |
-
hidden_states.shape[-1] // self.config.patch_size,
|
604 |
-
)
|
605 |
-
hidden_states = self.pos_embed(hidden_states)
|
606 |
-
|
607 |
-
timestep, embedded_timestep = self.adaln_single(
|
608 |
-
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
609 |
-
)
|
610 |
-
|
611 |
-
if self.caption_projection is not None:
|
612 |
-
# Add positional embeddings to conditions if >1 UNI are given
|
613 |
-
if self.y_pos_embed is not None:
|
614 |
-
encoder_hidden_states = self.y_pos_embed(encoder_hidden_states)
|
615 |
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
616 |
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
617 |
-
|
618 |
-
# 2. Blocks
|
619 |
-
for block in self.transformer_blocks:
|
620 |
-
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
621 |
-
|
622 |
-
def create_custom_forward(module, return_dict=None):
|
623 |
-
def custom_forward(*inputs):
|
624 |
-
if return_dict is not None:
|
625 |
-
return module(*inputs, return_dict=return_dict)
|
626 |
-
else:
|
627 |
-
return module(*inputs)
|
628 |
-
|
629 |
-
return custom_forward
|
630 |
-
|
631 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
632 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
633 |
-
create_custom_forward(block),
|
634 |
-
hidden_states,
|
635 |
-
attention_mask,
|
636 |
-
encoder_hidden_states,
|
637 |
-
encoder_attention_mask,
|
638 |
-
timestep,
|
639 |
-
cross_attention_kwargs,
|
640 |
-
None,
|
641 |
-
**ckpt_kwargs,
|
642 |
-
)
|
643 |
-
else:
|
644 |
-
hidden_states = block(
|
645 |
-
hidden_states,
|
646 |
-
attention_mask=attention_mask,
|
647 |
-
encoder_hidden_states=encoder_hidden_states,
|
648 |
-
encoder_attention_mask=encoder_attention_mask,
|
649 |
-
timestep=timestep,
|
650 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
651 |
-
class_labels=None,
|
652 |
-
)
|
653 |
-
|
654 |
-
# 3. Output
|
655 |
-
shift, scale = (
|
656 |
-
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
|
657 |
-
).chunk(2, dim=1)
|
658 |
-
hidden_states = self.norm_out(hidden_states)
|
659 |
-
# Modulation
|
660 |
-
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
|
661 |
-
hidden_states = self.proj_out(hidden_states)
|
662 |
-
hidden_states = hidden_states.squeeze(1)
|
663 |
-
|
664 |
-
# unpatchify
|
665 |
-
hidden_states = hidden_states.reshape(
|
666 |
-
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
|
667 |
-
)
|
668 |
-
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
669 |
-
output = hidden_states.reshape(
|
670 |
-
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
|
671 |
-
)
|
672 |
-
|
673 |
-
if not return_dict:
|
674 |
-
return (output,)
|
675 |
-
|
676 |
-
return Transformer2DModelOutput(sample=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|