Upload pixcell_controlnet.py
Browse files- pixcell_controlnet.py +675 -0
pixcell_controlnet.py
ADDED
|
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
from typing import Any, Dict, Optional, Union, Tuple
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 21 |
+
from diffusers.utils import is_torch_version, logging
|
| 22 |
+
from diffusers.models.attention import BasicTransformerBlock
|
| 23 |
+
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0
|
| 24 |
+
from diffusers.models.embeddings import PatchEmbed
|
| 25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 26 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
| 27 |
+
from diffusers.models.activations import deprecate, FP32SiLU
|
| 28 |
+
|
| 29 |
+
from diffusers.models.controlnet import zero_module
|
| 30 |
+
from diffusers.models.embeddings import PatchEmbed
|
| 31 |
+
from dataclasses import dataclass
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# PixCell UNI conditioning
|
| 37 |
+
def pixcell_get_2d_sincos_pos_embed(
|
| 38 |
+
embed_dim,
|
| 39 |
+
grid_size,
|
| 40 |
+
cls_token=False,
|
| 41 |
+
extra_tokens=0,
|
| 42 |
+
interpolation_scale=1.0,
|
| 43 |
+
base_size=16,
|
| 44 |
+
device: Optional[torch.device] = None,
|
| 45 |
+
phase=0,
|
| 46 |
+
output_type: str = "np",
|
| 47 |
+
):
|
| 48 |
+
"""
|
| 49 |
+
Creates 2D sinusoidal positional embeddings.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
embed_dim (`int`):
|
| 53 |
+
The embedding dimension.
|
| 54 |
+
grid_size (`int`):
|
| 55 |
+
The size of the grid height and width.
|
| 56 |
+
cls_token (`bool`, defaults to `False`):
|
| 57 |
+
Whether or not to add a classification token.
|
| 58 |
+
extra_tokens (`int`, defaults to `0`):
|
| 59 |
+
The number of extra tokens to add.
|
| 60 |
+
interpolation_scale (`float`, defaults to `1.0`):
|
| 61 |
+
The scale of the interpolation.
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
pos_embed (`torch.Tensor`):
|
| 65 |
+
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
|
| 66 |
+
embed_dim]` if using cls_token
|
| 67 |
+
"""
|
| 68 |
+
if output_type == "np":
|
| 69 |
+
deprecation_message = (
|
| 70 |
+
"`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
|
| 71 |
+
" `from_numpy` is no longer required."
|
| 72 |
+
" Pass `output_type='pt' to use the new version now."
|
| 73 |
+
)
|
| 74 |
+
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
| 75 |
+
raise ValueError("Not supported")
|
| 76 |
+
if isinstance(grid_size, int):
|
| 77 |
+
grid_size = (grid_size, grid_size)
|
| 78 |
+
|
| 79 |
+
grid_h = (
|
| 80 |
+
torch.arange(grid_size[0], device=device, dtype=torch.float32)
|
| 81 |
+
/ (grid_size[0] / base_size)
|
| 82 |
+
/ interpolation_scale
|
| 83 |
+
)
|
| 84 |
+
grid_w = (
|
| 85 |
+
torch.arange(grid_size[1], device=device, dtype=torch.float32)
|
| 86 |
+
/ (grid_size[1] / base_size)
|
| 87 |
+
/ interpolation_scale
|
| 88 |
+
)
|
| 89 |
+
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
|
| 90 |
+
grid = torch.stack(grid, dim=0)
|
| 91 |
+
|
| 92 |
+
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
|
| 93 |
+
pos_embed = pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=phase, output_type=output_type)
|
| 94 |
+
if cls_token and extra_tokens > 0:
|
| 95 |
+
pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
|
| 96 |
+
return pos_embed
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=0, output_type="np"):
|
| 100 |
+
r"""
|
| 101 |
+
This function generates 2D sinusoidal positional embeddings from a grid.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
embed_dim (`int`): The embedding dimension.
|
| 105 |
+
grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
`torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
|
| 109 |
+
"""
|
| 110 |
+
if output_type == "np":
|
| 111 |
+
deprecation_message = (
|
| 112 |
+
"`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
| 113 |
+
" `from_numpy` is no longer required."
|
| 114 |
+
" Pass `output_type='pt' to use the new version now."
|
| 115 |
+
)
|
| 116 |
+
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
| 117 |
+
raise ValueError("Not supported")
|
| 118 |
+
if embed_dim % 2 != 0:
|
| 119 |
+
raise ValueError("embed_dim must be divisible by 2")
|
| 120 |
+
|
| 121 |
+
# use half of dimensions to encode grid_h
|
| 122 |
+
emb_h = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], phase=phase, output_type=output_type) # (H*W, D/2)
|
| 123 |
+
emb_w = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], phase=phase, output_type=output_type) # (H*W, D/2)
|
| 124 |
+
|
| 125 |
+
emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D)
|
| 126 |
+
return emb
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim, pos, phase=0, output_type="np"):
|
| 130 |
+
"""
|
| 131 |
+
This function generates 1D positional embeddings from a grid.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
embed_dim (`int`): The embedding dimension `D`
|
| 135 |
+
pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
`torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
|
| 139 |
+
"""
|
| 140 |
+
if output_type == "np":
|
| 141 |
+
deprecation_message = (
|
| 142 |
+
"`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
| 143 |
+
" `from_numpy` is no longer required."
|
| 144 |
+
" Pass `output_type='pt' to use the new version now."
|
| 145 |
+
)
|
| 146 |
+
deprecate("output_type=='np'", "0.34.0", deprecation_message, standard_warn=False)
|
| 147 |
+
raise ValueError("Not supported")
|
| 148 |
+
if embed_dim % 2 != 0:
|
| 149 |
+
raise ValueError("embed_dim must be divisible by 2")
|
| 150 |
+
|
| 151 |
+
omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
|
| 152 |
+
omega /= embed_dim / 2.0
|
| 153 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
| 154 |
+
|
| 155 |
+
pos = pos.reshape(-1) + phase # (M,)
|
| 156 |
+
out = torch.outer(pos, omega) # (M, D/2), outer product
|
| 157 |
+
|
| 158 |
+
emb_sin = torch.sin(out) # (M, D/2)
|
| 159 |
+
emb_cos = torch.cos(out) # (M, D/2)
|
| 160 |
+
|
| 161 |
+
emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D)
|
| 162 |
+
return emb
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class PixcellUNIProjection(nn.Module):
|
| 166 |
+
"""
|
| 167 |
+
Projects UNI embeddings. Also handles dropout for classifier-free guidance.
|
| 168 |
+
|
| 169 |
+
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
| 170 |
+
"""
|
| 171 |
+
|
| 172 |
+
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", num_tokens=1):
|
| 173 |
+
super().__init__()
|
| 174 |
+
if out_features is None:
|
| 175 |
+
out_features = hidden_size
|
| 176 |
+
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
|
| 177 |
+
if act_fn == "gelu_tanh":
|
| 178 |
+
self.act_1 = nn.GELU(approximate="tanh")
|
| 179 |
+
elif act_fn == "silu":
|
| 180 |
+
self.act_1 = nn.SiLU()
|
| 181 |
+
elif act_fn == "silu_fp32":
|
| 182 |
+
self.act_1 = FP32SiLU()
|
| 183 |
+
else:
|
| 184 |
+
raise ValueError(f"Unknown activation function: {act_fn}")
|
| 185 |
+
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
|
| 186 |
+
|
| 187 |
+
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features ** 0.5))
|
| 188 |
+
|
| 189 |
+
def forward(self, caption):
|
| 190 |
+
hidden_states = self.linear_1(caption)
|
| 191 |
+
hidden_states = self.act_1(hidden_states)
|
| 192 |
+
hidden_states = self.linear_2(hidden_states)
|
| 193 |
+
return hidden_states
|
| 194 |
+
|
| 195 |
+
class UNIPosEmbed(nn.Module):
|
| 196 |
+
"""
|
| 197 |
+
Adds positional embeddings to the UNI conditions.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
height (`int`, defaults to `224`): The height of the image.
|
| 201 |
+
width (`int`, defaults to `224`): The width of the image.
|
| 202 |
+
patch_size (`int`, defaults to `16`): The size of the patches.
|
| 203 |
+
in_channels (`int`, defaults to `3`): The number of input channels.
|
| 204 |
+
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
|
| 205 |
+
layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
|
| 206 |
+
flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
|
| 207 |
+
bias (`bool`, defaults to `True`): Whether or not to use bias.
|
| 208 |
+
interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
|
| 209 |
+
pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
|
| 210 |
+
pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
|
| 211 |
+
"""
|
| 212 |
+
|
| 213 |
+
def __init__(
|
| 214 |
+
self,
|
| 215 |
+
height=1,
|
| 216 |
+
width=1,
|
| 217 |
+
base_size=16,
|
| 218 |
+
embed_dim=768,
|
| 219 |
+
interpolation_scale=1,
|
| 220 |
+
pos_embed_type="sincos",
|
| 221 |
+
):
|
| 222 |
+
super().__init__()
|
| 223 |
+
|
| 224 |
+
num_embeds = height*width
|
| 225 |
+
grid_size = int(num_embeds ** 0.5)
|
| 226 |
+
|
| 227 |
+
if pos_embed_type == "sincos":
|
| 228 |
+
y_pos_embed = pixcell_get_2d_sincos_pos_embed(
|
| 229 |
+
embed_dim,
|
| 230 |
+
grid_size,
|
| 231 |
+
base_size=base_size,
|
| 232 |
+
interpolation_scale=interpolation_scale,
|
| 233 |
+
output_type="pt",
|
| 234 |
+
phase = base_size // num_embeds
|
| 235 |
+
)
|
| 236 |
+
self.register_buffer("y_pos_embed", y_pos_embed.float().unsqueeze(0))
|
| 237 |
+
else:
|
| 238 |
+
raise ValueError("`pos_embed_type` not supported")
|
| 239 |
+
|
| 240 |
+
def forward(self, uni_embeds):
|
| 241 |
+
return (uni_embeds + self.y_pos_embed).to(uni_embeds.dtype)
|
| 242 |
+
|
| 243 |
+
from diffusers.utils import BaseOutput, is_torch_version
|
| 244 |
+
@dataclass
|
| 245 |
+
class PixCellControlNetOutput(BaseOutput):
|
| 246 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
| 247 |
+
|
| 248 |
+
class PixCellControlNet(ModelMixin, ConfigMixin):
|
| 249 |
+
r"""
|
| 250 |
+
A 2D Transformer ControlNet model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
|
| 251 |
+
https://arxiv.org/abs/2403.04692). Modified for the pathology domain.
|
| 252 |
+
|
| 253 |
+
Parameters:
|
| 254 |
+
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
|
| 255 |
+
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
|
| 256 |
+
in_channels (int, defaults to 4): The number of channels in the input.
|
| 257 |
+
out_channels (int, optional):
|
| 258 |
+
The number of channels in the output. Specify this parameter if the output channel number differs from the
|
| 259 |
+
input.
|
| 260 |
+
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
|
| 261 |
+
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
|
| 262 |
+
norm_num_groups (int, optional, defaults to 32):
|
| 263 |
+
Number of groups for group normalization within Transformer blocks.
|
| 264 |
+
cross_attention_dim (int, optional):
|
| 265 |
+
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
|
| 266 |
+
attention_bias (bool, optional, defaults to True):
|
| 267 |
+
Configure if the Transformer blocks' attention should contain a bias parameter.
|
| 268 |
+
sample_size (int, defaults to 128):
|
| 269 |
+
The width of the latent images. This parameter is fixed during training.
|
| 270 |
+
patch_size (int, defaults to 2):
|
| 271 |
+
Size of the patches the model processes, relevant for architectures working on non-sequential data.
|
| 272 |
+
activation_fn (str, optional, defaults to "gelu-approximate"):
|
| 273 |
+
Activation function to use in feed-forward networks within Transformer blocks.
|
| 274 |
+
num_embeds_ada_norm (int, optional, defaults to 1000):
|
| 275 |
+
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
|
| 276 |
+
inference.
|
| 277 |
+
upcast_attention (bool, optional, defaults to False):
|
| 278 |
+
If true, upcasts the attention mechanism dimensions for potentially improved performance.
|
| 279 |
+
norm_type (str, optional, defaults to "ada_norm_zero"):
|
| 280 |
+
Specifies the type of normalization used, can be 'ada_norm_zero'.
|
| 281 |
+
norm_elementwise_affine (bool, optional, defaults to False):
|
| 282 |
+
If true, enables element-wise affine parameters in the normalization layers.
|
| 283 |
+
norm_eps (float, optional, defaults to 1e-6):
|
| 284 |
+
A small constant added to the denominator in normalization layers to prevent division by zero.
|
| 285 |
+
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
|
| 286 |
+
use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
|
| 287 |
+
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
|
| 288 |
+
caption_channels (int, optional, defaults to None):
|
| 289 |
+
Number of channels to use for projecting the caption embeddings.
|
| 290 |
+
use_linear_projection (bool, optional, defaults to False):
|
| 291 |
+
Deprecated argument. Will be removed in a future version.
|
| 292 |
+
num_vector_embeds (bool, optional, defaults to False):
|
| 293 |
+
Deprecated argument. Will be removed in a future version.
|
| 294 |
+
"""
|
| 295 |
+
|
| 296 |
+
_supports_gradient_checkpointing = True
|
| 297 |
+
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
|
| 298 |
+
|
| 299 |
+
@register_to_config
|
| 300 |
+
def __init__(
|
| 301 |
+
self,
|
| 302 |
+
num_attention_heads: int = 16,
|
| 303 |
+
attention_head_dim: int = 72,
|
| 304 |
+
in_channels: int = 4,
|
| 305 |
+
out_channels: Optional[int] = 8,
|
| 306 |
+
num_layers: int = 28,
|
| 307 |
+
dropout: float = 0.0,
|
| 308 |
+
norm_num_groups: int = 32,
|
| 309 |
+
cross_attention_dim: Optional[int] = 1152,
|
| 310 |
+
attention_bias: bool = True,
|
| 311 |
+
sample_size: int = 128,
|
| 312 |
+
patch_size: int = 2,
|
| 313 |
+
activation_fn: str = "gelu-approximate",
|
| 314 |
+
num_embeds_ada_norm: Optional[int] = 1000,
|
| 315 |
+
upcast_attention: bool = False,
|
| 316 |
+
norm_type: str = "ada_norm_single",
|
| 317 |
+
norm_elementwise_affine: bool = False,
|
| 318 |
+
norm_eps: float = 1e-6,
|
| 319 |
+
interpolation_scale: Optional[int] = None,
|
| 320 |
+
use_additional_conditions: Optional[bool] = None,
|
| 321 |
+
caption_channels: Optional[int] = None,
|
| 322 |
+
caption_num_tokens: int = 1,
|
| 323 |
+
attention_type: Optional[str] = "default",
|
| 324 |
+
n_controlnet_blocks: Optional[int] = 28,
|
| 325 |
+
):
|
| 326 |
+
super().__init__()
|
| 327 |
+
|
| 328 |
+
# Validate inputs.
|
| 329 |
+
if norm_type != "ada_norm_single":
|
| 330 |
+
raise NotImplementedError(
|
| 331 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
| 332 |
+
)
|
| 333 |
+
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
|
| 334 |
+
raise ValueError(
|
| 335 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
# Set some common variables used across the board.
|
| 339 |
+
self.attention_head_dim = attention_head_dim
|
| 340 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 341 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 342 |
+
if use_additional_conditions is None:
|
| 343 |
+
if sample_size == 128:
|
| 344 |
+
use_additional_conditions = True
|
| 345 |
+
else:
|
| 346 |
+
use_additional_conditions = False
|
| 347 |
+
self.use_additional_conditions = use_additional_conditions
|
| 348 |
+
|
| 349 |
+
self.gradient_checkpointing = False
|
| 350 |
+
|
| 351 |
+
# 2. Initialize the position embedding and transformer blocks.
|
| 352 |
+
self.height = self.config.sample_size
|
| 353 |
+
self.width = self.config.sample_size
|
| 354 |
+
|
| 355 |
+
interpolation_scale = (
|
| 356 |
+
self.config.interpolation_scale
|
| 357 |
+
if self.config.interpolation_scale is not None
|
| 358 |
+
else max(self.config.sample_size // 64, 1)
|
| 359 |
+
)
|
| 360 |
+
self.pos_embed = PatchEmbed(
|
| 361 |
+
height=self.config.sample_size,
|
| 362 |
+
width=self.config.sample_size,
|
| 363 |
+
patch_size=self.config.patch_size,
|
| 364 |
+
in_channels=self.config.in_channels,
|
| 365 |
+
embed_dim=self.inner_dim,
|
| 366 |
+
interpolation_scale=interpolation_scale,
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
self.transformer_blocks = nn.ModuleList(
|
| 370 |
+
[
|
| 371 |
+
BasicTransformerBlock(
|
| 372 |
+
self.inner_dim,
|
| 373 |
+
self.config.num_attention_heads,
|
| 374 |
+
self.config.attention_head_dim,
|
| 375 |
+
dropout=self.config.dropout,
|
| 376 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
| 377 |
+
activation_fn=self.config.activation_fn,
|
| 378 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
| 379 |
+
attention_bias=self.config.attention_bias,
|
| 380 |
+
upcast_attention=self.config.upcast_attention,
|
| 381 |
+
norm_type=norm_type,
|
| 382 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
| 383 |
+
norm_eps=self.config.norm_eps,
|
| 384 |
+
attention_type=self.config.attention_type,
|
| 385 |
+
)
|
| 386 |
+
for _ in range(self.config.num_layers)
|
| 387 |
+
]
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
# Initialize the positional embedding for the conditions for >1 UNI embeddings
|
| 391 |
+
if self.config.caption_num_tokens == 1:
|
| 392 |
+
self.y_pos_embed = None
|
| 393 |
+
else:
|
| 394 |
+
# 1:1 aspect ratio
|
| 395 |
+
self.uni_height = int(self.config.caption_num_tokens ** 0.5)
|
| 396 |
+
self.uni_width = int(self.config.caption_num_tokens ** 0.5)
|
| 397 |
+
|
| 398 |
+
self.y_pos_embed = UNIPosEmbed(
|
| 399 |
+
height=self.uni_height,
|
| 400 |
+
width=self.uni_width,
|
| 401 |
+
base_size=self.config.sample_size // self.config.patch_size,
|
| 402 |
+
embed_dim=self.config.caption_channels,
|
| 403 |
+
interpolation_scale=2, # Should this be fixed?
|
| 404 |
+
pos_embed_type="sincos", # This is fixed
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
# 3. Output blocks.
|
| 408 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 409 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
| 410 |
+
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
|
| 411 |
+
|
| 412 |
+
self.adaln_single = AdaLayerNormSingle(
|
| 413 |
+
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
| 414 |
+
)
|
| 415 |
+
self.caption_projection = None
|
| 416 |
+
if self.config.caption_channels is not None:
|
| 417 |
+
self.caption_projection = PixcellUNIProjection(
|
| 418 |
+
in_features=self.config.caption_channels, hidden_size=self.inner_dim, num_tokens=self.config.caption_num_tokens,
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
# 4. ControlNet blocks
|
| 423 |
+
# Condition patch embedding
|
| 424 |
+
self.cond_pos_embed = zero_module(PatchEmbed(
|
| 425 |
+
height=self.config.sample_size,
|
| 426 |
+
width=self.config.sample_size,
|
| 427 |
+
patch_size=self.config.patch_size,
|
| 428 |
+
in_channels=self.config.in_channels,
|
| 429 |
+
embed_dim=self.inner_dim,
|
| 430 |
+
interpolation_scale=interpolation_scale,
|
| 431 |
+
))
|
| 432 |
+
# Can use a subset of the transformer blocks for ControLNet
|
| 433 |
+
self.n_controlnet_blocks = n_controlnet_blocks
|
| 434 |
+
if self.n_controlnet_blocks is not None:
|
| 435 |
+
self.transformer_blocks = self.transformer_blocks[:self.n_controlnet_blocks]
|
| 436 |
+
|
| 437 |
+
# ControlNet layers
|
| 438 |
+
self.controlnet_blocks = nn.ModuleList([])
|
| 439 |
+
for i in range(len(self.transformer_blocks)):
|
| 440 |
+
controlnet_block = nn.Linear(self.inner_dim, self.inner_dim)
|
| 441 |
+
controlnet_block = zero_module(controlnet_block)
|
| 442 |
+
self.controlnet_blocks.append(controlnet_block)
|
| 443 |
+
|
| 444 |
+
if self.n_controlnet_blocks is not None:
|
| 445 |
+
if i+1 == self.n_controlnet_blocks:
|
| 446 |
+
break
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 451 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 452 |
+
module.gradient_checkpointing = value
|
| 453 |
+
|
| 454 |
+
@property
|
| 455 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 456 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 457 |
+
r"""
|
| 458 |
+
Returns:
|
| 459 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 460 |
+
indexed by its weight name.
|
| 461 |
+
"""
|
| 462 |
+
# set recursively
|
| 463 |
+
processors = {}
|
| 464 |
+
|
| 465 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 466 |
+
if hasattr(module, "get_processor"):
|
| 467 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 468 |
+
|
| 469 |
+
for sub_name, child in module.named_children():
|
| 470 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 471 |
+
|
| 472 |
+
return processors
|
| 473 |
+
|
| 474 |
+
for name, module in self.named_children():
|
| 475 |
+
fn_recursive_add_processors(name, module, processors)
|
| 476 |
+
|
| 477 |
+
return processors
|
| 478 |
+
|
| 479 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 480 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 481 |
+
r"""
|
| 482 |
+
Sets the attention processor to use to compute attention.
|
| 483 |
+
|
| 484 |
+
Parameters:
|
| 485 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 486 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 487 |
+
for **all** `Attention` layers.
|
| 488 |
+
|
| 489 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 490 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 491 |
+
|
| 492 |
+
"""
|
| 493 |
+
count = len(self.attn_processors.keys())
|
| 494 |
+
|
| 495 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 496 |
+
raise ValueError(
|
| 497 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 498 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 502 |
+
if hasattr(module, "set_processor"):
|
| 503 |
+
if not isinstance(processor, dict):
|
| 504 |
+
module.set_processor(processor)
|
| 505 |
+
else:
|
| 506 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 507 |
+
|
| 508 |
+
for sub_name, child in module.named_children():
|
| 509 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 510 |
+
|
| 511 |
+
for name, module in self.named_children():
|
| 512 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 513 |
+
|
| 514 |
+
def set_default_attn_processor(self):
|
| 515 |
+
"""
|
| 516 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 517 |
+
|
| 518 |
+
Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
|
| 519 |
+
"""
|
| 520 |
+
self.set_attn_processor(AttnProcessor())
|
| 521 |
+
|
| 522 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
| 523 |
+
def fuse_qkv_projections(self):
|
| 524 |
+
"""
|
| 525 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 526 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 527 |
+
|
| 528 |
+
<Tip warning={true}>
|
| 529 |
+
|
| 530 |
+
This API is 🧪 experimental.
|
| 531 |
+
|
| 532 |
+
</Tip>
|
| 533 |
+
"""
|
| 534 |
+
self.original_attn_processors = None
|
| 535 |
+
|
| 536 |
+
for _, attn_processor in self.attn_processors.items():
|
| 537 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 538 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 539 |
+
|
| 540 |
+
self.original_attn_processors = self.attn_processors
|
| 541 |
+
|
| 542 |
+
for module in self.modules():
|
| 543 |
+
if isinstance(module, Attention):
|
| 544 |
+
module.fuse_projections(fuse=True)
|
| 545 |
+
|
| 546 |
+
self.set_attn_processor(FusedAttnProcessor2_0())
|
| 547 |
+
|
| 548 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 549 |
+
def unfuse_qkv_projections(self):
|
| 550 |
+
"""Disables the fused QKV projection if enabled.
|
| 551 |
+
|
| 552 |
+
<Tip warning={true}>
|
| 553 |
+
|
| 554 |
+
This API is 🧪 experimental.
|
| 555 |
+
|
| 556 |
+
</Tip>
|
| 557 |
+
|
| 558 |
+
"""
|
| 559 |
+
if self.original_attn_processors is not None:
|
| 560 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 561 |
+
|
| 562 |
+
def forward(
|
| 563 |
+
self,
|
| 564 |
+
hidden_states: torch.Tensor,
|
| 565 |
+
conditioning: torch.Tensor,
|
| 566 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 567 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 568 |
+
conditioning_scale: float = 1.0,
|
| 569 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
| 570 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 571 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 572 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 573 |
+
return_dict: bool = True,
|
| 574 |
+
):
|
| 575 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
| 576 |
+
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
|
| 577 |
+
|
| 578 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 579 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 580 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 581 |
+
# expects mask of shape:
|
| 582 |
+
# [batch, key_tokens]
|
| 583 |
+
# adds singleton query_tokens dimension:
|
| 584 |
+
# [batch, 1, key_tokens]
|
| 585 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 586 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 587 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 588 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 589 |
+
# assume that mask is expressed as:
|
| 590 |
+
# (1 = keep, 0 = discard)
|
| 591 |
+
# convert mask into a bias that can be added to attention scores:
|
| 592 |
+
# (keep = +0, discard = -10000.0)
|
| 593 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 594 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 595 |
+
|
| 596 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 597 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 598 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 599 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 600 |
+
|
| 601 |
+
# 1. Input
|
| 602 |
+
batch_size = hidden_states.shape[0]
|
| 603 |
+
height, width = (
|
| 604 |
+
hidden_states.shape[-2] // self.config.patch_size,
|
| 605 |
+
hidden_states.shape[-1] // self.config.patch_size,
|
| 606 |
+
)
|
| 607 |
+
hidden_states = self.pos_embed(hidden_states)
|
| 608 |
+
|
| 609 |
+
# Conditioning
|
| 610 |
+
hidden_states = hidden_states + self.cond_pos_embed(conditioning)
|
| 611 |
+
|
| 612 |
+
timestep, embedded_timestep = self.adaln_single(
|
| 613 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
if self.caption_projection is not None:
|
| 617 |
+
# Add positional embeddings to conditions if >1 UNI are given
|
| 618 |
+
if self.y_pos_embed is not None:
|
| 619 |
+
encoder_hidden_states = self.y_pos_embed(encoder_hidden_states)
|
| 620 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 621 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 622 |
+
|
| 623 |
+
# 2. Blocks
|
| 624 |
+
block_outputs = ()
|
| 625 |
+
|
| 626 |
+
for block in self.transformer_blocks:
|
| 627 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 628 |
+
|
| 629 |
+
def create_custom_forward(module, return_dict=None):
|
| 630 |
+
def custom_forward(*inputs):
|
| 631 |
+
if return_dict is not None:
|
| 632 |
+
return module(*inputs, return_dict=return_dict)
|
| 633 |
+
else:
|
| 634 |
+
return module(*inputs)
|
| 635 |
+
|
| 636 |
+
return custom_forward
|
| 637 |
+
|
| 638 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 639 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 640 |
+
create_custom_forward(block),
|
| 641 |
+
hidden_states,
|
| 642 |
+
attention_mask,
|
| 643 |
+
encoder_hidden_states,
|
| 644 |
+
encoder_attention_mask,
|
| 645 |
+
timestep,
|
| 646 |
+
cross_attention_kwargs,
|
| 647 |
+
None,
|
| 648 |
+
**ckpt_kwargs,
|
| 649 |
+
)
|
| 650 |
+
else:
|
| 651 |
+
hidden_states = block(
|
| 652 |
+
hidden_states,
|
| 653 |
+
attention_mask=attention_mask,
|
| 654 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 655 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 656 |
+
timestep=timestep,
|
| 657 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 658 |
+
class_labels=None,
|
| 659 |
+
)
|
| 660 |
+
|
| 661 |
+
block_outputs = block_outputs + (hidden_states,)
|
| 662 |
+
|
| 663 |
+
# 3. controlnet blocks
|
| 664 |
+
controlnet_outputs = ()
|
| 665 |
+
for t_output, controlnet_block in zip(block_outputs, self.controlnet_blocks):
|
| 666 |
+
b_output = controlnet_block(t_output)
|
| 667 |
+
controlnet_outputs = controlnet_outputs + (b_output,)
|
| 668 |
+
|
| 669 |
+
controlnet_outputs = [sample * conditioning_scale for sample in controlnet_outputs]
|
| 670 |
+
|
| 671 |
+
if not return_dict:
|
| 672 |
+
return (controlnet_outputs,)
|
| 673 |
+
|
| 674 |
+
return PixCellControlNetOutput(controlnet_block_samples=controlnet_outputs)
|
| 675 |
+
|