fp16 inference
Browse files
README.md
CHANGED
|
@@ -26,6 +26,7 @@ pipeline = DiffusionPipeline.from_pretrained(
|
|
| 26 |
vae=sd3_vae,
|
| 27 |
custom_pipeline="StonyBrook-CVLab/PixCell-pipeline",
|
| 28 |
trust_remote_code=True,
|
|
|
|
| 29 |
)
|
| 30 |
|
| 31 |
pipeline.to(device);
|
|
@@ -61,7 +62,8 @@ uni_model.to(device);
|
|
| 61 |
### Unconditional generation
|
| 62 |
```python
|
| 63 |
uncond = pipeline.get_unconditional_embedding(1)
|
| 64 |
-
|
|
|
|
| 65 |
```
|
| 66 |
|
| 67 |
### Conditional generation
|
|
@@ -87,5 +89,6 @@ print("Extracted UNI:", uni_emb.shape)
|
|
| 87 |
# Get unconditional embedding for classifier-free guidance
|
| 88 |
uncond = pipeline.get_unconditional_embedding(uni_emb.shape[0])
|
| 89 |
# Generate new samples
|
| 90 |
-
|
|
|
|
| 91 |
```
|
|
|
|
| 26 |
vae=sd3_vae,
|
| 27 |
custom_pipeline="StonyBrook-CVLab/PixCell-pipeline",
|
| 28 |
trust_remote_code=True,
|
| 29 |
+
torch_dtype=torch.float16,
|
| 30 |
)
|
| 31 |
|
| 32 |
pipeline.to(device);
|
|
|
|
| 62 |
### Unconditional generation
|
| 63 |
```python
|
| 64 |
uncond = pipeline.get_unconditional_embedding(1)
|
| 65 |
+
with torch.amp.autocast('cuda'):
|
| 66 |
+
samples = pipeline(uni_embeds=uncond, negative_uni_embeds=None, guidance_scale=1.0)
|
| 67 |
```
|
| 68 |
|
| 69 |
### Conditional generation
|
|
|
|
| 89 |
# Get unconditional embedding for classifier-free guidance
|
| 90 |
uncond = pipeline.get_unconditional_embedding(uni_emb.shape[0])
|
| 91 |
# Generate new samples
|
| 92 |
+
with torch.amp.autocast('cuda'):
|
| 93 |
+
samples = pipeline(uni_embeds=uni_emb, negative_uni_embeds=uncond, guidance_scale=3., num_images_per_prompt=1).images
|
| 94 |
```
|