Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- model_index.json +16 -0
- pipeline.py +1122 -0
- scheduler/scheduler_config.json +30 -0
- test_image.jpg +3 -0
- transformer/config.json +31 -0
- transformer/diffusion_pytorch_model.safetensors +3 -0
- transformer/pixcell_transformer_2d.py +676 -0
- vae/config.json +38 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
test_image.jpg filter=lfs diff=lfs merge=lfs -text
|
model_index.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "PixCellPipeline",
|
| 3 |
+
"_diffusers_version": "0.32.2",
|
| 4 |
+
"transformer": [
|
| 5 |
+
"pixcell_transformer_2d",
|
| 6 |
+
"PixCellTransformer2DModel"
|
| 7 |
+
],
|
| 8 |
+
"vae": [
|
| 9 |
+
"diffusers",
|
| 10 |
+
"AutoencoderKL"
|
| 11 |
+
],
|
| 12 |
+
"scheduler": [
|
| 13 |
+
"diffusers",
|
| 14 |
+
"DPMSolverMultistepScheduler"
|
| 15 |
+
]
|
| 16 |
+
}
|
pipeline.py
ADDED
|
@@ -0,0 +1,1122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
import urllib.parse as ul
|
| 17 |
+
from typing import Callable, List, Optional, Tuple, Union
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
from torch import nn
|
| 21 |
+
|
| 22 |
+
from diffusers.image_processor import PixArtImageProcessor
|
| 23 |
+
from diffusers.models import AutoencoderKL
|
| 24 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
| 25 |
+
from diffusers.utils import (
|
| 26 |
+
BACKENDS_MAPPING,
|
| 27 |
+
deprecate,
|
| 28 |
+
logging,
|
| 29 |
+
replace_example_docstring,
|
| 30 |
+
)
|
| 31 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 32 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
| 33 |
+
|
| 34 |
+
from pixcell_transformer_2d import PixCellTransformer2DModel
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
from typing import Any, Dict, Optional, Union
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 41 |
+
from diffusers.utils import is_torch_version, logging
|
| 42 |
+
from diffusers.models.attention import BasicTransformerBlock
|
| 43 |
+
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0
|
| 44 |
+
from diffusers.models.embeddings import PatchEmbed
|
| 45 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 46 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 47 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
| 48 |
+
|
| 49 |
+
from typing import List, Optional, Tuple, Union
|
| 50 |
+
|
| 51 |
+
import numpy as np
|
| 52 |
+
import torch
|
| 53 |
+
import torch.nn.functional as F
|
| 54 |
+
from torch import nn
|
| 55 |
+
|
| 56 |
+
from diffusers.models.activations import deprecate, FP32SiLU
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def pixcell_get_2d_sincos_pos_embed(
|
| 60 |
+
embed_dim,
|
| 61 |
+
grid_size,
|
| 62 |
+
cls_token=False,
|
| 63 |
+
extra_tokens=0,
|
| 64 |
+
interpolation_scale=1.0,
|
| 65 |
+
base_size=16,
|
| 66 |
+
device: Optional[torch.device] = None,
|
| 67 |
+
phase=0,
|
| 68 |
+
output_type: str = "np",
|
| 69 |
+
):
|
| 70 |
+
"""
|
| 71 |
+
Creates 2D sinusoidal positional embeddings.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
embed_dim (`int`):
|
| 75 |
+
The embedding dimension.
|
| 76 |
+
grid_size (`int`):
|
| 77 |
+
The size of the grid height and width.
|
| 78 |
+
cls_token (`bool`, defaults to `False`):
|
| 79 |
+
Whether or not to add a classification token.
|
| 80 |
+
extra_tokens (`int`, defaults to `0`):
|
| 81 |
+
The number of extra tokens to add.
|
| 82 |
+
interpolation_scale (`float`, defaults to `1.0`):
|
| 83 |
+
The scale of the interpolation.
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
pos_embed (`torch.Tensor`):
|
| 87 |
+
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
|
| 88 |
+
embed_dim]` if using cls_token
|
| 89 |
+
"""
|
| 90 |
+
if output_type == "np":
|
| 91 |
+
deprecation_message = (
|
| 92 |
+
"`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
|
| 93 |
+
" `from_numpy` is no longer required."
|
| 94 |
+
" Pass `output_type='pt' to use the new version now."
|
| 95 |
+
)
|
| 96 |
+
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
| 97 |
+
raise ValueError("Not supported")
|
| 98 |
+
if isinstance(grid_size, int):
|
| 99 |
+
grid_size = (grid_size, grid_size)
|
| 100 |
+
|
| 101 |
+
grid_h = (
|
| 102 |
+
torch.arange(grid_size[0], device=device, dtype=torch.float32)
|
| 103 |
+
/ (grid_size[0] / base_size)
|
| 104 |
+
/ interpolation_scale
|
| 105 |
+
)
|
| 106 |
+
grid_w = (
|
| 107 |
+
torch.arange(grid_size[1], device=device, dtype=torch.float32)
|
| 108 |
+
/ (grid_size[1] / base_size)
|
| 109 |
+
/ interpolation_scale
|
| 110 |
+
)
|
| 111 |
+
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
|
| 112 |
+
grid = torch.stack(grid, dim=0)
|
| 113 |
+
|
| 114 |
+
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
|
| 115 |
+
pos_embed = pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=phase, output_type=output_type)
|
| 116 |
+
if cls_token and extra_tokens > 0:
|
| 117 |
+
pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
|
| 118 |
+
return pos_embed
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=0, output_type="np"):
|
| 122 |
+
r"""
|
| 123 |
+
This function generates 2D sinusoidal positional embeddings from a grid.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
embed_dim (`int`): The embedding dimension.
|
| 127 |
+
grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.
|
| 128 |
+
|
| 129 |
+
Returns:
|
| 130 |
+
`torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
|
| 131 |
+
"""
|
| 132 |
+
if output_type == "np":
|
| 133 |
+
deprecation_message = (
|
| 134 |
+
"`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
| 135 |
+
" `from_numpy` is no longer required."
|
| 136 |
+
" Pass `output_type='pt' to use the new version now."
|
| 137 |
+
)
|
| 138 |
+
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
| 139 |
+
raise ValueError("Not supported")
|
| 140 |
+
if embed_dim % 2 != 0:
|
| 141 |
+
raise ValueError("embed_dim must be divisible by 2")
|
| 142 |
+
|
| 143 |
+
# use half of dimensions to encode grid_h
|
| 144 |
+
emb_h = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], phase=phase, output_type=output_type) # (H*W, D/2)
|
| 145 |
+
emb_w = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], phase=phase, output_type=output_type) # (H*W, D/2)
|
| 146 |
+
|
| 147 |
+
emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D)
|
| 148 |
+
return emb
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim, pos, phase=0, output_type="np"):
|
| 152 |
+
"""
|
| 153 |
+
This function generates 1D positional embeddings from a grid.
|
| 154 |
+
|
| 155 |
+
Args:
|
| 156 |
+
embed_dim (`int`): The embedding dimension `D`
|
| 157 |
+
pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
`torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
|
| 161 |
+
"""
|
| 162 |
+
if output_type == "np":
|
| 163 |
+
deprecation_message = (
|
| 164 |
+
"`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
| 165 |
+
" `from_numpy` is no longer required."
|
| 166 |
+
" Pass `output_type='pt' to use the new version now."
|
| 167 |
+
)
|
| 168 |
+
deprecate("output_type=='np'", "0.34.0", deprecation_message, standard_warn=False)
|
| 169 |
+
raise ValueError("Not supported")
|
| 170 |
+
if embed_dim % 2 != 0:
|
| 171 |
+
raise ValueError("embed_dim must be divisible by 2")
|
| 172 |
+
|
| 173 |
+
omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
|
| 174 |
+
omega /= embed_dim / 2.0
|
| 175 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
| 176 |
+
|
| 177 |
+
pos = pos.reshape(-1) + phase # (M,)
|
| 178 |
+
out = torch.outer(pos, omega) # (M, D/2), outer product
|
| 179 |
+
|
| 180 |
+
emb_sin = torch.sin(out) # (M, D/2)
|
| 181 |
+
emb_cos = torch.cos(out) # (M, D/2)
|
| 182 |
+
|
| 183 |
+
emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D)
|
| 184 |
+
return emb
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class PixcellUNIProjection(nn.Module):
|
| 188 |
+
"""
|
| 189 |
+
Projects UNI embeddings. Also handles dropout for classifier-free guidance.
|
| 190 |
+
|
| 191 |
+
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
| 192 |
+
"""
|
| 193 |
+
|
| 194 |
+
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", num_tokens=1):
|
| 195 |
+
super().__init__()
|
| 196 |
+
if out_features is None:
|
| 197 |
+
out_features = hidden_size
|
| 198 |
+
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
|
| 199 |
+
if act_fn == "gelu_tanh":
|
| 200 |
+
self.act_1 = nn.GELU(approximate="tanh")
|
| 201 |
+
elif act_fn == "silu":
|
| 202 |
+
self.act_1 = nn.SiLU()
|
| 203 |
+
elif act_fn == "silu_fp32":
|
| 204 |
+
self.act_1 = FP32SiLU()
|
| 205 |
+
else:
|
| 206 |
+
raise ValueError(f"Unknown activation function: {act_fn}")
|
| 207 |
+
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
|
| 208 |
+
|
| 209 |
+
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features ** 0.5))
|
| 210 |
+
|
| 211 |
+
def forward(self, caption):
|
| 212 |
+
hidden_states = self.linear_1(caption)
|
| 213 |
+
hidden_states = self.act_1(hidden_states)
|
| 214 |
+
hidden_states = self.linear_2(hidden_states)
|
| 215 |
+
return hidden_states
|
| 216 |
+
|
| 217 |
+
class UNIPosEmbed(nn.Module):
|
| 218 |
+
"""
|
| 219 |
+
Adds positional embeddings to the UNI conditions.
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
height (`int`, defaults to `224`): The height of the image.
|
| 223 |
+
width (`int`, defaults to `224`): The width of the image.
|
| 224 |
+
patch_size (`int`, defaults to `16`): The size of the patches.
|
| 225 |
+
in_channels (`int`, defaults to `3`): The number of input channels.
|
| 226 |
+
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
|
| 227 |
+
layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
|
| 228 |
+
flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
|
| 229 |
+
bias (`bool`, defaults to `True`): Whether or not to use bias.
|
| 230 |
+
interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
|
| 231 |
+
pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
|
| 232 |
+
pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
|
| 233 |
+
"""
|
| 234 |
+
|
| 235 |
+
def __init__(
|
| 236 |
+
self,
|
| 237 |
+
height=1,
|
| 238 |
+
width=1,
|
| 239 |
+
base_size=16,
|
| 240 |
+
embed_dim=768,
|
| 241 |
+
interpolation_scale=1,
|
| 242 |
+
pos_embed_type="sincos",
|
| 243 |
+
):
|
| 244 |
+
super().__init__()
|
| 245 |
+
|
| 246 |
+
num_embeds = height*width
|
| 247 |
+
grid_size = int(num_embeds ** 0.5)
|
| 248 |
+
|
| 249 |
+
if pos_embed_type == "sincos":
|
| 250 |
+
y_pos_embed = pixcell_get_2d_sincos_pos_embed(
|
| 251 |
+
embed_dim,
|
| 252 |
+
grid_size,
|
| 253 |
+
base_size=base_size,
|
| 254 |
+
interpolation_scale=interpolation_scale,
|
| 255 |
+
output_type="pt",
|
| 256 |
+
phase = base_size // num_embeds
|
| 257 |
+
)
|
| 258 |
+
self.register_buffer("y_pos_embed", y_pos_embed.float().unsqueeze(0))
|
| 259 |
+
else:
|
| 260 |
+
raise ValueError("`pos_embed_type` not supported")
|
| 261 |
+
|
| 262 |
+
def forward(self, uni_embeds):
|
| 263 |
+
return (uni_embeds + self.y_pos_embed).to(uni_embeds.dtype)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class PixCellTransformer2DModel(ModelMixin, ConfigMixin):
|
| 271 |
+
r"""
|
| 272 |
+
A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
|
| 273 |
+
https://arxiv.org/abs/2403.04692). Modified for the pathology domain.
|
| 274 |
+
|
| 275 |
+
Parameters:
|
| 276 |
+
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
|
| 277 |
+
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
|
| 278 |
+
in_channels (int, defaults to 4): The number of channels in the input.
|
| 279 |
+
out_channels (int, optional):
|
| 280 |
+
The number of channels in the output. Specify this parameter if the output channel number differs from the
|
| 281 |
+
input.
|
| 282 |
+
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
|
| 283 |
+
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
|
| 284 |
+
norm_num_groups (int, optional, defaults to 32):
|
| 285 |
+
Number of groups for group normalization within Transformer blocks.
|
| 286 |
+
cross_attention_dim (int, optional):
|
| 287 |
+
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
|
| 288 |
+
attention_bias (bool, optional, defaults to True):
|
| 289 |
+
Configure if the Transformer blocks' attention should contain a bias parameter.
|
| 290 |
+
sample_size (int, defaults to 128):
|
| 291 |
+
The width of the latent images. This parameter is fixed during training.
|
| 292 |
+
patch_size (int, defaults to 2):
|
| 293 |
+
Size of the patches the model processes, relevant for architectures working on non-sequential data.
|
| 294 |
+
activation_fn (str, optional, defaults to "gelu-approximate"):
|
| 295 |
+
Activation function to use in feed-forward networks within Transformer blocks.
|
| 296 |
+
num_embeds_ada_norm (int, optional, defaults to 1000):
|
| 297 |
+
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
|
| 298 |
+
inference.
|
| 299 |
+
upcast_attention (bool, optional, defaults to False):
|
| 300 |
+
If true, upcasts the attention mechanism dimensions for potentially improved performance.
|
| 301 |
+
norm_type (str, optional, defaults to "ada_norm_zero"):
|
| 302 |
+
Specifies the type of normalization used, can be 'ada_norm_zero'.
|
| 303 |
+
norm_elementwise_affine (bool, optional, defaults to False):
|
| 304 |
+
If true, enables element-wise affine parameters in the normalization layers.
|
| 305 |
+
norm_eps (float, optional, defaults to 1e-6):
|
| 306 |
+
A small constant added to the denominator in normalization layers to prevent division by zero.
|
| 307 |
+
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
|
| 308 |
+
use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
|
| 309 |
+
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
|
| 310 |
+
caption_channels (int, optional, defaults to None):
|
| 311 |
+
Number of channels to use for projecting the caption embeddings.
|
| 312 |
+
use_linear_projection (bool, optional, defaults to False):
|
| 313 |
+
Deprecated argument. Will be removed in a future version.
|
| 314 |
+
num_vector_embeds (bool, optional, defaults to False):
|
| 315 |
+
Deprecated argument. Will be removed in a future version.
|
| 316 |
+
"""
|
| 317 |
+
|
| 318 |
+
_supports_gradient_checkpointing = True
|
| 319 |
+
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
|
| 320 |
+
|
| 321 |
+
@register_to_config
|
| 322 |
+
def __init__(
|
| 323 |
+
self,
|
| 324 |
+
num_attention_heads: int = 16,
|
| 325 |
+
attention_head_dim: int = 72,
|
| 326 |
+
in_channels: int = 4,
|
| 327 |
+
out_channels: Optional[int] = 8,
|
| 328 |
+
num_layers: int = 28,
|
| 329 |
+
dropout: float = 0.0,
|
| 330 |
+
norm_num_groups: int = 32,
|
| 331 |
+
cross_attention_dim: Optional[int] = 1152,
|
| 332 |
+
attention_bias: bool = True,
|
| 333 |
+
sample_size: int = 128,
|
| 334 |
+
patch_size: int = 2,
|
| 335 |
+
activation_fn: str = "gelu-approximate",
|
| 336 |
+
num_embeds_ada_norm: Optional[int] = 1000,
|
| 337 |
+
upcast_attention: bool = False,
|
| 338 |
+
norm_type: str = "ada_norm_single",
|
| 339 |
+
norm_elementwise_affine: bool = False,
|
| 340 |
+
norm_eps: float = 1e-6,
|
| 341 |
+
interpolation_scale: Optional[int] = None,
|
| 342 |
+
use_additional_conditions: Optional[bool] = None,
|
| 343 |
+
caption_channels: Optional[int] = None,
|
| 344 |
+
caption_num_tokens: int = 1,
|
| 345 |
+
attention_type: Optional[str] = "default",
|
| 346 |
+
):
|
| 347 |
+
super().__init__()
|
| 348 |
+
|
| 349 |
+
# Validate inputs.
|
| 350 |
+
if norm_type != "ada_norm_single":
|
| 351 |
+
raise NotImplementedError(
|
| 352 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
| 353 |
+
)
|
| 354 |
+
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
|
| 355 |
+
raise ValueError(
|
| 356 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
# Set some common variables used across the board.
|
| 360 |
+
self.attention_head_dim = attention_head_dim
|
| 361 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 362 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 363 |
+
if use_additional_conditions is None:
|
| 364 |
+
if sample_size == 128:
|
| 365 |
+
use_additional_conditions = True
|
| 366 |
+
else:
|
| 367 |
+
use_additional_conditions = False
|
| 368 |
+
self.use_additional_conditions = use_additional_conditions
|
| 369 |
+
|
| 370 |
+
self.gradient_checkpointing = False
|
| 371 |
+
|
| 372 |
+
# 2. Initialize the position embedding and transformer blocks.
|
| 373 |
+
self.height = self.config.sample_size
|
| 374 |
+
self.width = self.config.sample_size
|
| 375 |
+
|
| 376 |
+
interpolation_scale = (
|
| 377 |
+
self.config.interpolation_scale
|
| 378 |
+
if self.config.interpolation_scale is not None
|
| 379 |
+
else max(self.config.sample_size // 64, 1)
|
| 380 |
+
)
|
| 381 |
+
self.pos_embed = PatchEmbed(
|
| 382 |
+
height=self.config.sample_size,
|
| 383 |
+
width=self.config.sample_size,
|
| 384 |
+
patch_size=self.config.patch_size,
|
| 385 |
+
in_channels=self.config.in_channels,
|
| 386 |
+
embed_dim=self.inner_dim,
|
| 387 |
+
interpolation_scale=interpolation_scale,
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
self.transformer_blocks = nn.ModuleList(
|
| 391 |
+
[
|
| 392 |
+
BasicTransformerBlock(
|
| 393 |
+
self.inner_dim,
|
| 394 |
+
self.config.num_attention_heads,
|
| 395 |
+
self.config.attention_head_dim,
|
| 396 |
+
dropout=self.config.dropout,
|
| 397 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
| 398 |
+
activation_fn=self.config.activation_fn,
|
| 399 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
| 400 |
+
attention_bias=self.config.attention_bias,
|
| 401 |
+
upcast_attention=self.config.upcast_attention,
|
| 402 |
+
norm_type=norm_type,
|
| 403 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
| 404 |
+
norm_eps=self.config.norm_eps,
|
| 405 |
+
attention_type=self.config.attention_type,
|
| 406 |
+
)
|
| 407 |
+
for _ in range(self.config.num_layers)
|
| 408 |
+
]
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
# Initialize the positional embedding for the conditions for >1 UNI embeddings
|
| 412 |
+
if self.config.caption_num_tokens == 1:
|
| 413 |
+
self.y_pos_embed = None
|
| 414 |
+
else:
|
| 415 |
+
# 1:1 aspect ratio
|
| 416 |
+
self.uni_height = int(self.config.caption_num_tokens ** 0.5)
|
| 417 |
+
self.uni_width = int(self.config.caption_num_tokens ** 0.5)
|
| 418 |
+
|
| 419 |
+
self.y_pos_embed = UNIPosEmbed(
|
| 420 |
+
height=self.uni_height,
|
| 421 |
+
width=self.uni_width,
|
| 422 |
+
base_size=self.config.sample_size // self.config.patch_size,
|
| 423 |
+
embed_dim=self.config.caption_channels,
|
| 424 |
+
interpolation_scale=2, # Should this be fixed?
|
| 425 |
+
pos_embed_type="sincos", # This is fixed
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
# 3. Output blocks.
|
| 429 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 430 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
| 431 |
+
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
|
| 432 |
+
|
| 433 |
+
self.adaln_single = AdaLayerNormSingle(
|
| 434 |
+
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
| 435 |
+
)
|
| 436 |
+
self.caption_projection = None
|
| 437 |
+
if self.config.caption_channels is not None:
|
| 438 |
+
self.caption_projection = PixcellUNIProjection(
|
| 439 |
+
in_features=self.config.caption_channels, hidden_size=self.inner_dim, num_tokens=self.config.caption_num_tokens,
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 443 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 444 |
+
module.gradient_checkpointing = value
|
| 445 |
+
|
| 446 |
+
@property
|
| 447 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 448 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 449 |
+
r"""
|
| 450 |
+
Returns:
|
| 451 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 452 |
+
indexed by its weight name.
|
| 453 |
+
"""
|
| 454 |
+
# set recursively
|
| 455 |
+
processors = {}
|
| 456 |
+
|
| 457 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 458 |
+
if hasattr(module, "get_processor"):
|
| 459 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 460 |
+
|
| 461 |
+
for sub_name, child in module.named_children():
|
| 462 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 463 |
+
|
| 464 |
+
return processors
|
| 465 |
+
|
| 466 |
+
for name, module in self.named_children():
|
| 467 |
+
fn_recursive_add_processors(name, module, processors)
|
| 468 |
+
|
| 469 |
+
return processors
|
| 470 |
+
|
| 471 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 472 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 473 |
+
r"""
|
| 474 |
+
Sets the attention processor to use to compute attention.
|
| 475 |
+
|
| 476 |
+
Parameters:
|
| 477 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 478 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 479 |
+
for **all** `Attention` layers.
|
| 480 |
+
|
| 481 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 482 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 483 |
+
|
| 484 |
+
"""
|
| 485 |
+
count = len(self.attn_processors.keys())
|
| 486 |
+
|
| 487 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 488 |
+
raise ValueError(
|
| 489 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 490 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 494 |
+
if hasattr(module, "set_processor"):
|
| 495 |
+
if not isinstance(processor, dict):
|
| 496 |
+
module.set_processor(processor)
|
| 497 |
+
else:
|
| 498 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 499 |
+
|
| 500 |
+
for sub_name, child in module.named_children():
|
| 501 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 502 |
+
|
| 503 |
+
for name, module in self.named_children():
|
| 504 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 505 |
+
|
| 506 |
+
def set_default_attn_processor(self):
|
| 507 |
+
"""
|
| 508 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 509 |
+
|
| 510 |
+
Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
|
| 511 |
+
"""
|
| 512 |
+
self.set_attn_processor(AttnProcessor())
|
| 513 |
+
|
| 514 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
| 515 |
+
def fuse_qkv_projections(self):
|
| 516 |
+
"""
|
| 517 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 518 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 519 |
+
|
| 520 |
+
<Tip warning={true}>
|
| 521 |
+
|
| 522 |
+
This API is 🧪 experimental.
|
| 523 |
+
|
| 524 |
+
</Tip>
|
| 525 |
+
"""
|
| 526 |
+
self.original_attn_processors = None
|
| 527 |
+
|
| 528 |
+
for _, attn_processor in self.attn_processors.items():
|
| 529 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 530 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 531 |
+
|
| 532 |
+
self.original_attn_processors = self.attn_processors
|
| 533 |
+
|
| 534 |
+
for module in self.modules():
|
| 535 |
+
if isinstance(module, Attention):
|
| 536 |
+
module.fuse_projections(fuse=True)
|
| 537 |
+
|
| 538 |
+
self.set_attn_processor(FusedAttnProcessor2_0())
|
| 539 |
+
|
| 540 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 541 |
+
def unfuse_qkv_projections(self):
|
| 542 |
+
"""Disables the fused QKV projection if enabled.
|
| 543 |
+
|
| 544 |
+
<Tip warning={true}>
|
| 545 |
+
|
| 546 |
+
This API is 🧪 experimental.
|
| 547 |
+
|
| 548 |
+
</Tip>
|
| 549 |
+
|
| 550 |
+
"""
|
| 551 |
+
if self.original_attn_processors is not None:
|
| 552 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 553 |
+
|
| 554 |
+
def forward(
|
| 555 |
+
self,
|
| 556 |
+
hidden_states: torch.Tensor,
|
| 557 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 558 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 559 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
| 560 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 561 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 562 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 563 |
+
return_dict: bool = True,
|
| 564 |
+
):
|
| 565 |
+
"""
|
| 566 |
+
The [`PixCellTransformer2DModel`] forward method.
|
| 567 |
+
|
| 568 |
+
Args:
|
| 569 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 570 |
+
Input `hidden_states`.
|
| 571 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 572 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 573 |
+
self-attention.
|
| 574 |
+
timestep (`torch.LongTensor`, *optional*):
|
| 575 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
| 576 |
+
added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
|
| 577 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
| 578 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 579 |
+
`self.processor` in
|
| 580 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 581 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
| 582 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 583 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 584 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 585 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
| 586 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
| 587 |
+
|
| 588 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
| 589 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
| 590 |
+
|
| 591 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
| 592 |
+
above. This bias will be added to the cross-attention scores.
|
| 593 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 594 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 595 |
+
tuple.
|
| 596 |
+
|
| 597 |
+
Returns:
|
| 598 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 599 |
+
`tuple` where the first element is the sample tensor.
|
| 600 |
+
"""
|
| 601 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
| 602 |
+
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
|
| 603 |
+
|
| 604 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 605 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 606 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 607 |
+
# expects mask of shape:
|
| 608 |
+
# [batch, key_tokens]
|
| 609 |
+
# adds singleton query_tokens dimension:
|
| 610 |
+
# [batch, 1, key_tokens]
|
| 611 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 612 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 613 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 614 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 615 |
+
# assume that mask is expressed as:
|
| 616 |
+
# (1 = keep, 0 = discard)
|
| 617 |
+
# convert mask into a bias that can be added to attention scores:
|
| 618 |
+
# (keep = +0, discard = -10000.0)
|
| 619 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 620 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 621 |
+
|
| 622 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 623 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 624 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 625 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 626 |
+
|
| 627 |
+
# 1. Input
|
| 628 |
+
batch_size = hidden_states.shape[0]
|
| 629 |
+
height, width = (
|
| 630 |
+
hidden_states.shape[-2] // self.config.patch_size,
|
| 631 |
+
hidden_states.shape[-1] // self.config.patch_size,
|
| 632 |
+
)
|
| 633 |
+
hidden_states = self.pos_embed(hidden_states)
|
| 634 |
+
|
| 635 |
+
timestep, embedded_timestep = self.adaln_single(
|
| 636 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 637 |
+
)
|
| 638 |
+
|
| 639 |
+
if self.caption_projection is not None:
|
| 640 |
+
# Add positional embeddings to conditions if >1 UNI are given
|
| 641 |
+
if self.y_pos_embed is not None:
|
| 642 |
+
encoder_hidden_states = self.y_pos_embed(encoder_hidden_states)
|
| 643 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 644 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 645 |
+
|
| 646 |
+
# 2. Blocks
|
| 647 |
+
for block in self.transformer_blocks:
|
| 648 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 649 |
+
|
| 650 |
+
def create_custom_forward(module, return_dict=None):
|
| 651 |
+
def custom_forward(*inputs):
|
| 652 |
+
if return_dict is not None:
|
| 653 |
+
return module(*inputs, return_dict=return_dict)
|
| 654 |
+
else:
|
| 655 |
+
return module(*inputs)
|
| 656 |
+
|
| 657 |
+
return custom_forward
|
| 658 |
+
|
| 659 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 660 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 661 |
+
create_custom_forward(block),
|
| 662 |
+
hidden_states,
|
| 663 |
+
attention_mask,
|
| 664 |
+
encoder_hidden_states,
|
| 665 |
+
encoder_attention_mask,
|
| 666 |
+
timestep,
|
| 667 |
+
cross_attention_kwargs,
|
| 668 |
+
None,
|
| 669 |
+
**ckpt_kwargs,
|
| 670 |
+
)
|
| 671 |
+
else:
|
| 672 |
+
hidden_states = block(
|
| 673 |
+
hidden_states,
|
| 674 |
+
attention_mask=attention_mask,
|
| 675 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 676 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 677 |
+
timestep=timestep,
|
| 678 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 679 |
+
class_labels=None,
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
# 3. Output
|
| 683 |
+
shift, scale = (
|
| 684 |
+
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
|
| 685 |
+
).chunk(2, dim=1)
|
| 686 |
+
hidden_states = self.norm_out(hidden_states)
|
| 687 |
+
# Modulation
|
| 688 |
+
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
|
| 689 |
+
hidden_states = self.proj_out(hidden_states)
|
| 690 |
+
hidden_states = hidden_states.squeeze(1)
|
| 691 |
+
|
| 692 |
+
# unpatchify
|
| 693 |
+
hidden_states = hidden_states.reshape(
|
| 694 |
+
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
|
| 695 |
+
)
|
| 696 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 697 |
+
output = hidden_states.reshape(
|
| 698 |
+
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
|
| 699 |
+
)
|
| 700 |
+
|
| 701 |
+
if not return_dict:
|
| 702 |
+
return (output,)
|
| 703 |
+
|
| 704 |
+
return Transformer2DModelOutput(sample=output)
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
EXAMPLE_DOC_STRING = """
|
| 713 |
+
Examples:
|
| 714 |
+
```py
|
| 715 |
+
>>> import torch
|
| 716 |
+
>>> from diffusers import PixCellSigmaPipeline
|
| 717 |
+
|
| 718 |
+
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too.
|
| 719 |
+
>>> pipe = PixArtSigmaPipeline.from_pretrained(
|
| 720 |
+
... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16
|
| 721 |
+
... )
|
| 722 |
+
>>> # Enable memory optimizations.
|
| 723 |
+
>>> # pipe.enable_model_cpu_offload()
|
| 724 |
+
|
| 725 |
+
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
| 726 |
+
>>> image = pipe(prompt).images[0]
|
| 727 |
+
```
|
| 728 |
+
"""
|
| 729 |
+
|
| 730 |
+
|
| 731 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 732 |
+
def retrieve_timesteps(
|
| 733 |
+
scheduler,
|
| 734 |
+
num_inference_steps: Optional[int] = None,
|
| 735 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 736 |
+
timesteps: Optional[List[int]] = None,
|
| 737 |
+
sigmas: Optional[List[float]] = None,
|
| 738 |
+
**kwargs,
|
| 739 |
+
):
|
| 740 |
+
r"""
|
| 741 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 742 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 743 |
+
|
| 744 |
+
Args:
|
| 745 |
+
scheduler (`SchedulerMixin`):
|
| 746 |
+
The scheduler to get timesteps from.
|
| 747 |
+
num_inference_steps (`int`):
|
| 748 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 749 |
+
must be `None`.
|
| 750 |
+
device (`str` or `torch.device`, *optional*):
|
| 751 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 752 |
+
timesteps (`List[int]`, *optional*):
|
| 753 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 754 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 755 |
+
sigmas (`List[float]`, *optional*):
|
| 756 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 757 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 758 |
+
|
| 759 |
+
Returns:
|
| 760 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 761 |
+
second element is the number of inference steps.
|
| 762 |
+
"""
|
| 763 |
+
if timesteps is not None and sigmas is not None:
|
| 764 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 765 |
+
if timesteps is not None:
|
| 766 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 767 |
+
if not accepts_timesteps:
|
| 768 |
+
raise ValueError(
|
| 769 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 770 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 771 |
+
)
|
| 772 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 773 |
+
timesteps = scheduler.timesteps
|
| 774 |
+
num_inference_steps = len(timesteps)
|
| 775 |
+
elif sigmas is not None:
|
| 776 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 777 |
+
if not accept_sigmas:
|
| 778 |
+
raise ValueError(
|
| 779 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 780 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 781 |
+
)
|
| 782 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 783 |
+
timesteps = scheduler.timesteps
|
| 784 |
+
num_inference_steps = len(timesteps)
|
| 785 |
+
else:
|
| 786 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 787 |
+
timesteps = scheduler.timesteps
|
| 788 |
+
return timesteps, num_inference_steps
|
| 789 |
+
|
| 790 |
+
|
| 791 |
+
class PixCellPipeline(DiffusionPipeline):
|
| 792 |
+
r"""
|
| 793 |
+
Pipeline for SSL-to-image generation using PixCell.
|
| 794 |
+
"""
|
| 795 |
+
|
| 796 |
+
model_cpu_offload_seq = "transformer->vae"
|
| 797 |
+
|
| 798 |
+
def __init__(
|
| 799 |
+
self,
|
| 800 |
+
vae: AutoencoderKL,
|
| 801 |
+
transformer: PixCellTransformer2DModel,
|
| 802 |
+
scheduler: DPMSolverMultistepScheduler,
|
| 803 |
+
):
|
| 804 |
+
super().__init__()
|
| 805 |
+
|
| 806 |
+
self.register_modules(
|
| 807 |
+
vae=vae, transformer=transformer, scheduler=scheduler
|
| 808 |
+
)
|
| 809 |
+
|
| 810 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 811 |
+
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 812 |
+
|
| 813 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 814 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 815 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 816 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 817 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 818 |
+
# and should be between [0, 1]
|
| 819 |
+
|
| 820 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 821 |
+
extra_step_kwargs = {}
|
| 822 |
+
if accepts_eta:
|
| 823 |
+
extra_step_kwargs["eta"] = eta
|
| 824 |
+
|
| 825 |
+
# check if the scheduler accepts generator
|
| 826 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 827 |
+
if accepts_generator:
|
| 828 |
+
extra_step_kwargs["generator"] = generator
|
| 829 |
+
return extra_step_kwargs
|
| 830 |
+
|
| 831 |
+
def get_unconditional_embedding(self, batch_size=1):
|
| 832 |
+
# Unconditional embedding is learned
|
| 833 |
+
uncond = self.transformer.caption_projection.uncond_embedding.clone().tile(batch_size,1,1)
|
| 834 |
+
return uncond
|
| 835 |
+
|
| 836 |
+
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.check_inputs
|
| 837 |
+
def check_inputs(
|
| 838 |
+
self,
|
| 839 |
+
height,
|
| 840 |
+
width,
|
| 841 |
+
callback_steps,
|
| 842 |
+
uni_embeds=None,
|
| 843 |
+
negative_uni_embeds=None,
|
| 844 |
+
guidance_scale=None,
|
| 845 |
+
):
|
| 846 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 847 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 848 |
+
|
| 849 |
+
if (callback_steps is None) or (
|
| 850 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 851 |
+
):
|
| 852 |
+
raise ValueError(
|
| 853 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 854 |
+
f" {type(callback_steps)}."
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
if uni_embeds is None:
|
| 858 |
+
raise ValueError(
|
| 859 |
+
"Provide a UNI embedding `uni_embeds`."
|
| 860 |
+
)
|
| 861 |
+
elif len(uni_embeds.shape) != 3:
|
| 862 |
+
raise ValueError(
|
| 863 |
+
"UNI embedding given is not in (B,N,D)."
|
| 864 |
+
)
|
| 865 |
+
elif uni_embeds.shape[1] != self.transformer.config.caption_num_tokens:
|
| 866 |
+
raise ValueError(
|
| 867 |
+
f"Number of UNI embeddings must match the ones used in training ({self.transformer.config.caption_num_tokens})."
|
| 868 |
+
)
|
| 869 |
+
elif uni_embeds.shape[2] != self.transformer.config.caption_channels:
|
| 870 |
+
raise ValueError(
|
| 871 |
+
"UNI embedding given has incorrect dimenions."
|
| 872 |
+
)
|
| 873 |
+
|
| 874 |
+
if guidance_scale > 1.0:
|
| 875 |
+
if negative_uni_embeds is None:
|
| 876 |
+
raise ValueError(
|
| 877 |
+
"Provide a negative UNI embedding `negative_uni_embeds`."
|
| 878 |
+
)
|
| 879 |
+
elif len(negative_uni_embeds.shape) != 3:
|
| 880 |
+
raise ValueError(
|
| 881 |
+
"Negative UNI embedding given is not in (B,N,D)."
|
| 882 |
+
)
|
| 883 |
+
elif negative_uni_embeds.shape[1] != self.transformer.config.caption_num_tokens:
|
| 884 |
+
raise ValueError(
|
| 885 |
+
f"Number of negative UNI embeddings must match the ones used in training ({self.transformer.config.caption_num_tokens})."
|
| 886 |
+
)
|
| 887 |
+
elif negative_uni_embeds.shape[2] != self.transformer.config.caption_channels:
|
| 888 |
+
raise ValueError(
|
| 889 |
+
"Negative UNI embedding given has incorrect dimenions."
|
| 890 |
+
)
|
| 891 |
+
|
| 892 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 893 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 894 |
+
shape = (
|
| 895 |
+
batch_size,
|
| 896 |
+
num_channels_latents,
|
| 897 |
+
int(height) // self.vae_scale_factor,
|
| 898 |
+
int(width) // self.vae_scale_factor,
|
| 899 |
+
)
|
| 900 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 901 |
+
raise ValueError(
|
| 902 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 903 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 904 |
+
)
|
| 905 |
+
|
| 906 |
+
if latents is None:
|
| 907 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 908 |
+
else:
|
| 909 |
+
latents = latents.to(device)
|
| 910 |
+
|
| 911 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 912 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 913 |
+
return latents
|
| 914 |
+
|
| 915 |
+
@torch.no_grad()
|
| 916 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 917 |
+
def __call__(
|
| 918 |
+
self,
|
| 919 |
+
num_inference_steps: int = 20,
|
| 920 |
+
timesteps: List[int] = None,
|
| 921 |
+
sigmas: List[float] = None,
|
| 922 |
+
guidance_scale: float = 1.5,
|
| 923 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 924 |
+
height: Optional[int] = None,
|
| 925 |
+
width: Optional[int] = None,
|
| 926 |
+
eta: float = 0.0,
|
| 927 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 928 |
+
latents: Optional[torch.Tensor] = None,
|
| 929 |
+
uni_embeds: Optional[torch.Tensor] = None,
|
| 930 |
+
negative_uni_embeds: Optional[torch.Tensor] = None,
|
| 931 |
+
output_type: Optional[str] = "pil",
|
| 932 |
+
return_dict: bool = True,
|
| 933 |
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 934 |
+
callback_steps: int = 1,
|
| 935 |
+
**kwargs,
|
| 936 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
| 937 |
+
"""
|
| 938 |
+
Function invoked when calling the pipeline for generation.
|
| 939 |
+
|
| 940 |
+
Args:
|
| 941 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
| 942 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 943 |
+
expense of slower inference.
|
| 944 |
+
timesteps (`List[int]`, *optional*):
|
| 945 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 946 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 947 |
+
passed will be used. Must be in descending order.
|
| 948 |
+
sigmas (`List[float]`, *optional*):
|
| 949 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 950 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 951 |
+
will be used.
|
| 952 |
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
| 953 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 954 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 955 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 956 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 957 |
+
usually at the expense of lower image quality.
|
| 958 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 959 |
+
The number of images to generate per prompt.
|
| 960 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
| 961 |
+
The height in pixels of the generated image.
|
| 962 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
| 963 |
+
The width in pixels of the generated image.
|
| 964 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 965 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 966 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 967 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 968 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 969 |
+
to make generation deterministic.
|
| 970 |
+
latents (`torch.Tensor`, *optional*):
|
| 971 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 972 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 973 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 974 |
+
uni_embeds (`torch.Tensor`, *optional*):
|
| 975 |
+
Pre-generated UNI embeddings.
|
| 976 |
+
negative_uni_embeds (`torch.Tensor`, *optional*):
|
| 977 |
+
Pre-generated negative UNI embeddings.
|
| 978 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 979 |
+
The output format of the generate image. Choose between
|
| 980 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 981 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 982 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
| 983 |
+
callback (`Callable`, *optional*):
|
| 984 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 985 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
| 986 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 987 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 988 |
+
called at every step.
|
| 989 |
+
|
| 990 |
+
Examples:
|
| 991 |
+
|
| 992 |
+
Returns:
|
| 993 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
| 994 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
| 995 |
+
returned where the first element is a list with the generated images
|
| 996 |
+
"""
|
| 997 |
+
# 1. Check inputs. Raise error if not correct
|
| 998 |
+
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
| 999 |
+
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
| 1000 |
+
|
| 1001 |
+
self.check_inputs(
|
| 1002 |
+
height,
|
| 1003 |
+
width,
|
| 1004 |
+
callback_steps,
|
| 1005 |
+
uni_embeds,
|
| 1006 |
+
negative_uni_embeds,
|
| 1007 |
+
guidance_scale,
|
| 1008 |
+
)
|
| 1009 |
+
|
| 1010 |
+
# 2. Default height and width to transformer
|
| 1011 |
+
batch_size = uni_embeds.shape[0]
|
| 1012 |
+
|
| 1013 |
+
device = self._execution_device
|
| 1014 |
+
|
| 1015 |
+
# 3. Handle UNI conditioning
|
| 1016 |
+
|
| 1017 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 1018 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 1019 |
+
# corresponds to doing no classifier free guidance.
|
| 1020 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 1021 |
+
|
| 1022 |
+
uni_embeds = uni_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 1023 |
+
if do_classifier_free_guidance:
|
| 1024 |
+
negative_uni_embeds = negative_uni_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 1025 |
+
uni_embeds = torch.cat([negative_uni_embeds, uni_embeds], dim=0)
|
| 1026 |
+
|
| 1027 |
+
|
| 1028 |
+
# 4. Prepare timesteps
|
| 1029 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1030 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
| 1031 |
+
)
|
| 1032 |
+
|
| 1033 |
+
# 5. Prepare latents.
|
| 1034 |
+
latent_channels = self.transformer.config.in_channels
|
| 1035 |
+
latents = self.prepare_latents(
|
| 1036 |
+
batch_size * num_images_per_prompt,
|
| 1037 |
+
latent_channels,
|
| 1038 |
+
height,
|
| 1039 |
+
width,
|
| 1040 |
+
uni_embeds.dtype,
|
| 1041 |
+
device,
|
| 1042 |
+
generator,
|
| 1043 |
+
latents,
|
| 1044 |
+
)
|
| 1045 |
+
|
| 1046 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1047 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1048 |
+
|
| 1049 |
+
added_cond_kwargs = {}
|
| 1050 |
+
|
| 1051 |
+
# 7. Denoising loop
|
| 1052 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 1053 |
+
|
| 1054 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1055 |
+
for i, t in enumerate(timesteps):
|
| 1056 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 1057 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1058 |
+
|
| 1059 |
+
current_timestep = t
|
| 1060 |
+
if not torch.is_tensor(current_timestep):
|
| 1061 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 1062 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 1063 |
+
is_mps = latent_model_input.device.type == "mps"
|
| 1064 |
+
if isinstance(current_timestep, float):
|
| 1065 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 1066 |
+
else:
|
| 1067 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 1068 |
+
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
| 1069 |
+
elif len(current_timestep.shape) == 0:
|
| 1070 |
+
current_timestep = current_timestep[None].to(latent_model_input.device)
|
| 1071 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1072 |
+
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
| 1073 |
+
|
| 1074 |
+
# predict noise model_output
|
| 1075 |
+
noise_pred = self.transformer(
|
| 1076 |
+
latent_model_input,
|
| 1077 |
+
encoder_hidden_states=uni_embeds,
|
| 1078 |
+
timestep=current_timestep,
|
| 1079 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1080 |
+
return_dict=False,
|
| 1081 |
+
)[0]
|
| 1082 |
+
|
| 1083 |
+
# perform guidance
|
| 1084 |
+
if do_classifier_free_guidance:
|
| 1085 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1086 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1087 |
+
|
| 1088 |
+
# learned sigma
|
| 1089 |
+
if self.transformer.config.out_channels // 2 == latent_channels:
|
| 1090 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
| 1091 |
+
else:
|
| 1092 |
+
noise_pred = noise_pred
|
| 1093 |
+
|
| 1094 |
+
# compute previous image: x_t -> x_t-1
|
| 1095 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 1096 |
+
|
| 1097 |
+
# call the callback, if provided
|
| 1098 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1099 |
+
progress_bar.update()
|
| 1100 |
+
if callback is not None and i % callback_steps == 0:
|
| 1101 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1102 |
+
callback(step_idx, t, latents)
|
| 1103 |
+
|
| 1104 |
+
if not output_type == "latent":
|
| 1105 |
+
vae_scale = self.vae.config.scaling_factor
|
| 1106 |
+
vae_shift = getattr(self.vae.config, "shift_factor", 0)
|
| 1107 |
+
|
| 1108 |
+
image = self.vae.decode((latents / vae_scale) + vae_shift, return_dict=False)[0]
|
| 1109 |
+
|
| 1110 |
+
else:
|
| 1111 |
+
image = latents
|
| 1112 |
+
|
| 1113 |
+
if not output_type == "latent":
|
| 1114 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1115 |
+
|
| 1116 |
+
# Offload all models
|
| 1117 |
+
self.maybe_free_model_hooks()
|
| 1118 |
+
|
| 1119 |
+
if not return_dict:
|
| 1120 |
+
return (image,)
|
| 1121 |
+
|
| 1122 |
+
return ImagePipelineOutput(images=image)
|
scheduler/scheduler_config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "DPMSolverMultistepScheduler",
|
| 3 |
+
"_diffusers_version": "0.32.2",
|
| 4 |
+
"algorithm_type": "dpmsolver++",
|
| 5 |
+
"beta_end": 0.02,
|
| 6 |
+
"beta_schedule": "linear",
|
| 7 |
+
"beta_start": 0.0001,
|
| 8 |
+
"dynamic_thresholding_ratio": 0.995,
|
| 9 |
+
"euler_at_final": false,
|
| 10 |
+
"final_sigmas_type": "zero",
|
| 11 |
+
"flow_shift": 1.0,
|
| 12 |
+
"lambda_min_clipped": -Infinity,
|
| 13 |
+
"lower_order_final": true,
|
| 14 |
+
"num_train_timesteps": 1000,
|
| 15 |
+
"prediction_type": "epsilon",
|
| 16 |
+
"rescale_betas_zero_snr": false,
|
| 17 |
+
"sample_max_value": 1.0,
|
| 18 |
+
"solver_order": 2,
|
| 19 |
+
"solver_type": "midpoint",
|
| 20 |
+
"steps_offset": 0,
|
| 21 |
+
"thresholding": false,
|
| 22 |
+
"timestep_spacing": "linspace",
|
| 23 |
+
"trained_betas": null,
|
| 24 |
+
"use_beta_sigmas": false,
|
| 25 |
+
"use_exponential_sigmas": false,
|
| 26 |
+
"use_flow_sigmas": false,
|
| 27 |
+
"use_karras_sigmas": false,
|
| 28 |
+
"use_lu_lambdas": false,
|
| 29 |
+
"variance_type": null
|
| 30 |
+
}
|
test_image.jpg
ADDED
|
Git LFS Details
|
transformer/config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "PixCellTransformer2DModel",
|
| 3 |
+
"_diffusers_version": "0.32.2",
|
| 4 |
+
"_name_or_path": "pixart_256/transformer",
|
| 5 |
+
"activation_fn": "gelu-approximate",
|
| 6 |
+
"attention_bias": true,
|
| 7 |
+
"attention_head_dim": 72,
|
| 8 |
+
"attention_type": "default",
|
| 9 |
+
"caption_channels": 1536,
|
| 10 |
+
"caption_num_tokens": 1,
|
| 11 |
+
"cross_attention_dim": 1152,
|
| 12 |
+
"double_self_attention": false,
|
| 13 |
+
"dropout": 0.0,
|
| 14 |
+
"in_channels": 16,
|
| 15 |
+
"interpolation_scale": 0.5,
|
| 16 |
+
"norm_elementwise_affine": false,
|
| 17 |
+
"norm_eps": 1e-06,
|
| 18 |
+
"norm_num_groups": 32,
|
| 19 |
+
"norm_type": "ada_norm_single",
|
| 20 |
+
"num_attention_heads": 16,
|
| 21 |
+
"num_embeds_ada_norm": 1000,
|
| 22 |
+
"num_layers": 28,
|
| 23 |
+
"num_vector_embeds": null,
|
| 24 |
+
"only_cross_attention": false,
|
| 25 |
+
"out_channels": 32,
|
| 26 |
+
"patch_size": 2,
|
| 27 |
+
"sample_size": 32,
|
| 28 |
+
"upcast_attention": false,
|
| 29 |
+
"use_additional_conditions": false,
|
| 30 |
+
"use_linear_projection": false
|
| 31 |
+
}
|
transformer/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2897bd89e90037faf71c16ba6ce87165cb7c8509cafdab6aa824c3ea827cbe8
|
| 3 |
+
size 2432366184
|
transformer/pixcell_transformer_2d.py
ADDED
|
@@ -0,0 +1,676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Any, Dict, Optional, Union
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
from torch import nn
|
| 18 |
+
|
| 19 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 20 |
+
from diffusers.utils import is_torch_version, logging
|
| 21 |
+
from diffusers.models.attention import BasicTransformerBlock
|
| 22 |
+
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0
|
| 23 |
+
from diffusers.models.embeddings import PatchEmbed
|
| 24 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 26 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
| 27 |
+
from diffusers.models.activations import deprecate, FP32SiLU
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# PixCell UNI conditioning
|
| 34 |
+
def pixcell_get_2d_sincos_pos_embed(
|
| 35 |
+
embed_dim,
|
| 36 |
+
grid_size,
|
| 37 |
+
cls_token=False,
|
| 38 |
+
extra_tokens=0,
|
| 39 |
+
interpolation_scale=1.0,
|
| 40 |
+
base_size=16,
|
| 41 |
+
device: Optional[torch.device] = None,
|
| 42 |
+
phase=0,
|
| 43 |
+
output_type: str = "np",
|
| 44 |
+
):
|
| 45 |
+
"""
|
| 46 |
+
Creates 2D sinusoidal positional embeddings.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
embed_dim (`int`):
|
| 50 |
+
The embedding dimension.
|
| 51 |
+
grid_size (`int`):
|
| 52 |
+
The size of the grid height and width.
|
| 53 |
+
cls_token (`bool`, defaults to `False`):
|
| 54 |
+
Whether or not to add a classification token.
|
| 55 |
+
extra_tokens (`int`, defaults to `0`):
|
| 56 |
+
The number of extra tokens to add.
|
| 57 |
+
interpolation_scale (`float`, defaults to `1.0`):
|
| 58 |
+
The scale of the interpolation.
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
pos_embed (`torch.Tensor`):
|
| 62 |
+
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
|
| 63 |
+
embed_dim]` if using cls_token
|
| 64 |
+
"""
|
| 65 |
+
if output_type == "np":
|
| 66 |
+
deprecation_message = (
|
| 67 |
+
"`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
|
| 68 |
+
" `from_numpy` is no longer required."
|
| 69 |
+
" Pass `output_type='pt' to use the new version now."
|
| 70 |
+
)
|
| 71 |
+
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
| 72 |
+
raise ValueError("Not supported")
|
| 73 |
+
if isinstance(grid_size, int):
|
| 74 |
+
grid_size = (grid_size, grid_size)
|
| 75 |
+
|
| 76 |
+
grid_h = (
|
| 77 |
+
torch.arange(grid_size[0], device=device, dtype=torch.float32)
|
| 78 |
+
/ (grid_size[0] / base_size)
|
| 79 |
+
/ interpolation_scale
|
| 80 |
+
)
|
| 81 |
+
grid_w = (
|
| 82 |
+
torch.arange(grid_size[1], device=device, dtype=torch.float32)
|
| 83 |
+
/ (grid_size[1] / base_size)
|
| 84 |
+
/ interpolation_scale
|
| 85 |
+
)
|
| 86 |
+
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
|
| 87 |
+
grid = torch.stack(grid, dim=0)
|
| 88 |
+
|
| 89 |
+
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
|
| 90 |
+
pos_embed = pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=phase, output_type=output_type)
|
| 91 |
+
if cls_token and extra_tokens > 0:
|
| 92 |
+
pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
|
| 93 |
+
return pos_embed
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=0, output_type="np"):
|
| 97 |
+
r"""
|
| 98 |
+
This function generates 2D sinusoidal positional embeddings from a grid.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
embed_dim (`int`): The embedding dimension.
|
| 102 |
+
grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
`torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
|
| 106 |
+
"""
|
| 107 |
+
if output_type == "np":
|
| 108 |
+
deprecation_message = (
|
| 109 |
+
"`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
| 110 |
+
" `from_numpy` is no longer required."
|
| 111 |
+
" Pass `output_type='pt' to use the new version now."
|
| 112 |
+
)
|
| 113 |
+
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
| 114 |
+
raise ValueError("Not supported")
|
| 115 |
+
if embed_dim % 2 != 0:
|
| 116 |
+
raise ValueError("embed_dim must be divisible by 2")
|
| 117 |
+
|
| 118 |
+
# use half of dimensions to encode grid_h
|
| 119 |
+
emb_h = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], phase=phase, output_type=output_type) # (H*W, D/2)
|
| 120 |
+
emb_w = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], phase=phase, output_type=output_type) # (H*W, D/2)
|
| 121 |
+
|
| 122 |
+
emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D)
|
| 123 |
+
return emb
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim, pos, phase=0, output_type="np"):
|
| 127 |
+
"""
|
| 128 |
+
This function generates 1D positional embeddings from a grid.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
embed_dim (`int`): The embedding dimension `D`
|
| 132 |
+
pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`
|
| 133 |
+
|
| 134 |
+
Returns:
|
| 135 |
+
`torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
|
| 136 |
+
"""
|
| 137 |
+
if output_type == "np":
|
| 138 |
+
deprecation_message = (
|
| 139 |
+
"`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
| 140 |
+
" `from_numpy` is no longer required."
|
| 141 |
+
" Pass `output_type='pt' to use the new version now."
|
| 142 |
+
)
|
| 143 |
+
deprecate("output_type=='np'", "0.34.0", deprecation_message, standard_warn=False)
|
| 144 |
+
raise ValueError("Not supported")
|
| 145 |
+
if embed_dim % 2 != 0:
|
| 146 |
+
raise ValueError("embed_dim must be divisible by 2")
|
| 147 |
+
|
| 148 |
+
omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
|
| 149 |
+
omega /= embed_dim / 2.0
|
| 150 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
| 151 |
+
|
| 152 |
+
pos = pos.reshape(-1) + phase # (M,)
|
| 153 |
+
out = torch.outer(pos, omega) # (M, D/2), outer product
|
| 154 |
+
|
| 155 |
+
emb_sin = torch.sin(out) # (M, D/2)
|
| 156 |
+
emb_cos = torch.cos(out) # (M, D/2)
|
| 157 |
+
|
| 158 |
+
emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D)
|
| 159 |
+
return emb
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class PixcellUNIProjection(nn.Module):
|
| 163 |
+
"""
|
| 164 |
+
Projects UNI embeddings. Also handles dropout for classifier-free guidance.
|
| 165 |
+
|
| 166 |
+
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", num_tokens=1):
|
| 170 |
+
super().__init__()
|
| 171 |
+
if out_features is None:
|
| 172 |
+
out_features = hidden_size
|
| 173 |
+
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
|
| 174 |
+
if act_fn == "gelu_tanh":
|
| 175 |
+
self.act_1 = nn.GELU(approximate="tanh")
|
| 176 |
+
elif act_fn == "silu":
|
| 177 |
+
self.act_1 = nn.SiLU()
|
| 178 |
+
elif act_fn == "silu_fp32":
|
| 179 |
+
self.act_1 = FP32SiLU()
|
| 180 |
+
else:
|
| 181 |
+
raise ValueError(f"Unknown activation function: {act_fn}")
|
| 182 |
+
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
|
| 183 |
+
|
| 184 |
+
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features ** 0.5))
|
| 185 |
+
|
| 186 |
+
def forward(self, caption):
|
| 187 |
+
hidden_states = self.linear_1(caption)
|
| 188 |
+
hidden_states = self.act_1(hidden_states)
|
| 189 |
+
hidden_states = self.linear_2(hidden_states)
|
| 190 |
+
return hidden_states
|
| 191 |
+
|
| 192 |
+
class UNIPosEmbed(nn.Module):
|
| 193 |
+
"""
|
| 194 |
+
Adds positional embeddings to the UNI conditions.
|
| 195 |
+
|
| 196 |
+
Args:
|
| 197 |
+
height (`int`, defaults to `224`): The height of the image.
|
| 198 |
+
width (`int`, defaults to `224`): The width of the image.
|
| 199 |
+
patch_size (`int`, defaults to `16`): The size of the patches.
|
| 200 |
+
in_channels (`int`, defaults to `3`): The number of input channels.
|
| 201 |
+
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
|
| 202 |
+
layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
|
| 203 |
+
flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
|
| 204 |
+
bias (`bool`, defaults to `True`): Whether or not to use bias.
|
| 205 |
+
interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
|
| 206 |
+
pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
|
| 207 |
+
pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
|
| 208 |
+
"""
|
| 209 |
+
|
| 210 |
+
def __init__(
|
| 211 |
+
self,
|
| 212 |
+
height=1,
|
| 213 |
+
width=1,
|
| 214 |
+
base_size=16,
|
| 215 |
+
embed_dim=768,
|
| 216 |
+
interpolation_scale=1,
|
| 217 |
+
pos_embed_type="sincos",
|
| 218 |
+
):
|
| 219 |
+
super().__init__()
|
| 220 |
+
|
| 221 |
+
num_embeds = height*width
|
| 222 |
+
grid_size = int(num_embeds ** 0.5)
|
| 223 |
+
|
| 224 |
+
if pos_embed_type == "sincos":
|
| 225 |
+
y_pos_embed = pixcell_get_2d_sincos_pos_embed(
|
| 226 |
+
embed_dim,
|
| 227 |
+
grid_size,
|
| 228 |
+
base_size=base_size,
|
| 229 |
+
interpolation_scale=interpolation_scale,
|
| 230 |
+
output_type="pt",
|
| 231 |
+
phase = base_size // num_embeds
|
| 232 |
+
)
|
| 233 |
+
self.register_buffer("y_pos_embed", y_pos_embed.float().unsqueeze(0))
|
| 234 |
+
else:
|
| 235 |
+
raise ValueError("`pos_embed_type` not supported")
|
| 236 |
+
|
| 237 |
+
def forward(self, uni_embeds):
|
| 238 |
+
return (uni_embeds + self.y_pos_embed).to(uni_embeds.dtype)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class PixCellTransformer2DModel(ModelMixin, ConfigMixin):
|
| 243 |
+
r"""
|
| 244 |
+
A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
|
| 245 |
+
https://arxiv.org/abs/2403.04692). Modified for the pathology domain.
|
| 246 |
+
|
| 247 |
+
Parameters:
|
| 248 |
+
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
|
| 249 |
+
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
|
| 250 |
+
in_channels (int, defaults to 4): The number of channels in the input.
|
| 251 |
+
out_channels (int, optional):
|
| 252 |
+
The number of channels in the output. Specify this parameter if the output channel number differs from the
|
| 253 |
+
input.
|
| 254 |
+
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
|
| 255 |
+
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
|
| 256 |
+
norm_num_groups (int, optional, defaults to 32):
|
| 257 |
+
Number of groups for group normalization within Transformer blocks.
|
| 258 |
+
cross_attention_dim (int, optional):
|
| 259 |
+
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
|
| 260 |
+
attention_bias (bool, optional, defaults to True):
|
| 261 |
+
Configure if the Transformer blocks' attention should contain a bias parameter.
|
| 262 |
+
sample_size (int, defaults to 128):
|
| 263 |
+
The width of the latent images. This parameter is fixed during training.
|
| 264 |
+
patch_size (int, defaults to 2):
|
| 265 |
+
Size of the patches the model processes, relevant for architectures working on non-sequential data.
|
| 266 |
+
activation_fn (str, optional, defaults to "gelu-approximate"):
|
| 267 |
+
Activation function to use in feed-forward networks within Transformer blocks.
|
| 268 |
+
num_embeds_ada_norm (int, optional, defaults to 1000):
|
| 269 |
+
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
|
| 270 |
+
inference.
|
| 271 |
+
upcast_attention (bool, optional, defaults to False):
|
| 272 |
+
If true, upcasts the attention mechanism dimensions for potentially improved performance.
|
| 273 |
+
norm_type (str, optional, defaults to "ada_norm_zero"):
|
| 274 |
+
Specifies the type of normalization used, can be 'ada_norm_zero'.
|
| 275 |
+
norm_elementwise_affine (bool, optional, defaults to False):
|
| 276 |
+
If true, enables element-wise affine parameters in the normalization layers.
|
| 277 |
+
norm_eps (float, optional, defaults to 1e-6):
|
| 278 |
+
A small constant added to the denominator in normalization layers to prevent division by zero.
|
| 279 |
+
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
|
| 280 |
+
use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
|
| 281 |
+
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
|
| 282 |
+
caption_channels (int, optional, defaults to None):
|
| 283 |
+
Number of channels to use for projecting the caption embeddings.
|
| 284 |
+
use_linear_projection (bool, optional, defaults to False):
|
| 285 |
+
Deprecated argument. Will be removed in a future version.
|
| 286 |
+
num_vector_embeds (bool, optional, defaults to False):
|
| 287 |
+
Deprecated argument. Will be removed in a future version.
|
| 288 |
+
"""
|
| 289 |
+
|
| 290 |
+
_supports_gradient_checkpointing = True
|
| 291 |
+
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
|
| 292 |
+
|
| 293 |
+
@register_to_config
|
| 294 |
+
def __init__(
|
| 295 |
+
self,
|
| 296 |
+
num_attention_heads: int = 16,
|
| 297 |
+
attention_head_dim: int = 72,
|
| 298 |
+
in_channels: int = 4,
|
| 299 |
+
out_channels: Optional[int] = 8,
|
| 300 |
+
num_layers: int = 28,
|
| 301 |
+
dropout: float = 0.0,
|
| 302 |
+
norm_num_groups: int = 32,
|
| 303 |
+
cross_attention_dim: Optional[int] = 1152,
|
| 304 |
+
attention_bias: bool = True,
|
| 305 |
+
sample_size: int = 128,
|
| 306 |
+
patch_size: int = 2,
|
| 307 |
+
activation_fn: str = "gelu-approximate",
|
| 308 |
+
num_embeds_ada_norm: Optional[int] = 1000,
|
| 309 |
+
upcast_attention: bool = False,
|
| 310 |
+
norm_type: str = "ada_norm_single",
|
| 311 |
+
norm_elementwise_affine: bool = False,
|
| 312 |
+
norm_eps: float = 1e-6,
|
| 313 |
+
interpolation_scale: Optional[int] = None,
|
| 314 |
+
use_additional_conditions: Optional[bool] = None,
|
| 315 |
+
caption_channels: Optional[int] = None,
|
| 316 |
+
caption_num_tokens: int = 1,
|
| 317 |
+
attention_type: Optional[str] = "default",
|
| 318 |
+
):
|
| 319 |
+
super().__init__()
|
| 320 |
+
|
| 321 |
+
# Validate inputs.
|
| 322 |
+
if norm_type != "ada_norm_single":
|
| 323 |
+
raise NotImplementedError(
|
| 324 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
| 325 |
+
)
|
| 326 |
+
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
|
| 327 |
+
raise ValueError(
|
| 328 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
# Set some common variables used across the board.
|
| 332 |
+
self.attention_head_dim = attention_head_dim
|
| 333 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 334 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 335 |
+
if use_additional_conditions is None:
|
| 336 |
+
if sample_size == 128:
|
| 337 |
+
use_additional_conditions = True
|
| 338 |
+
else:
|
| 339 |
+
use_additional_conditions = False
|
| 340 |
+
self.use_additional_conditions = use_additional_conditions
|
| 341 |
+
|
| 342 |
+
self.gradient_checkpointing = False
|
| 343 |
+
|
| 344 |
+
# 2. Initialize the position embedding and transformer blocks.
|
| 345 |
+
self.height = self.config.sample_size
|
| 346 |
+
self.width = self.config.sample_size
|
| 347 |
+
|
| 348 |
+
interpolation_scale = (
|
| 349 |
+
self.config.interpolation_scale
|
| 350 |
+
if self.config.interpolation_scale is not None
|
| 351 |
+
else max(self.config.sample_size // 64, 1)
|
| 352 |
+
)
|
| 353 |
+
self.pos_embed = PatchEmbed(
|
| 354 |
+
height=self.config.sample_size,
|
| 355 |
+
width=self.config.sample_size,
|
| 356 |
+
patch_size=self.config.patch_size,
|
| 357 |
+
in_channels=self.config.in_channels,
|
| 358 |
+
embed_dim=self.inner_dim,
|
| 359 |
+
interpolation_scale=interpolation_scale,
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
self.transformer_blocks = nn.ModuleList(
|
| 363 |
+
[
|
| 364 |
+
BasicTransformerBlock(
|
| 365 |
+
self.inner_dim,
|
| 366 |
+
self.config.num_attention_heads,
|
| 367 |
+
self.config.attention_head_dim,
|
| 368 |
+
dropout=self.config.dropout,
|
| 369 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
| 370 |
+
activation_fn=self.config.activation_fn,
|
| 371 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
| 372 |
+
attention_bias=self.config.attention_bias,
|
| 373 |
+
upcast_attention=self.config.upcast_attention,
|
| 374 |
+
norm_type=norm_type,
|
| 375 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
| 376 |
+
norm_eps=self.config.norm_eps,
|
| 377 |
+
attention_type=self.config.attention_type,
|
| 378 |
+
)
|
| 379 |
+
for _ in range(self.config.num_layers)
|
| 380 |
+
]
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
# Initialize the positional embedding for the conditions for >1 UNI embeddings
|
| 384 |
+
if self.config.caption_num_tokens == 1:
|
| 385 |
+
self.y_pos_embed = None
|
| 386 |
+
else:
|
| 387 |
+
# 1:1 aspect ratio
|
| 388 |
+
self.uni_height = int(self.config.caption_num_tokens ** 0.5)
|
| 389 |
+
self.uni_width = int(self.config.caption_num_tokens ** 0.5)
|
| 390 |
+
|
| 391 |
+
self.y_pos_embed = UNIPosEmbed(
|
| 392 |
+
height=self.uni_height,
|
| 393 |
+
width=self.uni_width,
|
| 394 |
+
base_size=self.config.sample_size // self.config.patch_size,
|
| 395 |
+
embed_dim=self.config.caption_channels,
|
| 396 |
+
interpolation_scale=2, # Should this be fixed?
|
| 397 |
+
pos_embed_type="sincos", # This is fixed
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
# 3. Output blocks.
|
| 401 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 402 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
| 403 |
+
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
|
| 404 |
+
|
| 405 |
+
self.adaln_single = AdaLayerNormSingle(
|
| 406 |
+
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
| 407 |
+
)
|
| 408 |
+
self.caption_projection = None
|
| 409 |
+
if self.config.caption_channels is not None:
|
| 410 |
+
self.caption_projection = PixcellUNIProjection(
|
| 411 |
+
in_features=self.config.caption_channels, hidden_size=self.inner_dim, num_tokens=self.config.caption_num_tokens,
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 415 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 416 |
+
module.gradient_checkpointing = value
|
| 417 |
+
|
| 418 |
+
@property
|
| 419 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 420 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 421 |
+
r"""
|
| 422 |
+
Returns:
|
| 423 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 424 |
+
indexed by its weight name.
|
| 425 |
+
"""
|
| 426 |
+
# set recursively
|
| 427 |
+
processors = {}
|
| 428 |
+
|
| 429 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 430 |
+
if hasattr(module, "get_processor"):
|
| 431 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 432 |
+
|
| 433 |
+
for sub_name, child in module.named_children():
|
| 434 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 435 |
+
|
| 436 |
+
return processors
|
| 437 |
+
|
| 438 |
+
for name, module in self.named_children():
|
| 439 |
+
fn_recursive_add_processors(name, module, processors)
|
| 440 |
+
|
| 441 |
+
return processors
|
| 442 |
+
|
| 443 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 444 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 445 |
+
r"""
|
| 446 |
+
Sets the attention processor to use to compute attention.
|
| 447 |
+
|
| 448 |
+
Parameters:
|
| 449 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 450 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 451 |
+
for **all** `Attention` layers.
|
| 452 |
+
|
| 453 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 454 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 455 |
+
|
| 456 |
+
"""
|
| 457 |
+
count = len(self.attn_processors.keys())
|
| 458 |
+
|
| 459 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 460 |
+
raise ValueError(
|
| 461 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 462 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 466 |
+
if hasattr(module, "set_processor"):
|
| 467 |
+
if not isinstance(processor, dict):
|
| 468 |
+
module.set_processor(processor)
|
| 469 |
+
else:
|
| 470 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 471 |
+
|
| 472 |
+
for sub_name, child in module.named_children():
|
| 473 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 474 |
+
|
| 475 |
+
for name, module in self.named_children():
|
| 476 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 477 |
+
|
| 478 |
+
def set_default_attn_processor(self):
|
| 479 |
+
"""
|
| 480 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 481 |
+
|
| 482 |
+
Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
|
| 483 |
+
"""
|
| 484 |
+
self.set_attn_processor(AttnProcessor())
|
| 485 |
+
|
| 486 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
| 487 |
+
def fuse_qkv_projections(self):
|
| 488 |
+
"""
|
| 489 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 490 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 491 |
+
|
| 492 |
+
<Tip warning={true}>
|
| 493 |
+
|
| 494 |
+
This API is 🧪 experimental.
|
| 495 |
+
|
| 496 |
+
</Tip>
|
| 497 |
+
"""
|
| 498 |
+
self.original_attn_processors = None
|
| 499 |
+
|
| 500 |
+
for _, attn_processor in self.attn_processors.items():
|
| 501 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 502 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 503 |
+
|
| 504 |
+
self.original_attn_processors = self.attn_processors
|
| 505 |
+
|
| 506 |
+
for module in self.modules():
|
| 507 |
+
if isinstance(module, Attention):
|
| 508 |
+
module.fuse_projections(fuse=True)
|
| 509 |
+
|
| 510 |
+
self.set_attn_processor(FusedAttnProcessor2_0())
|
| 511 |
+
|
| 512 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 513 |
+
def unfuse_qkv_projections(self):
|
| 514 |
+
"""Disables the fused QKV projection if enabled.
|
| 515 |
+
|
| 516 |
+
<Tip warning={true}>
|
| 517 |
+
|
| 518 |
+
This API is 🧪 experimental.
|
| 519 |
+
|
| 520 |
+
</Tip>
|
| 521 |
+
|
| 522 |
+
"""
|
| 523 |
+
if self.original_attn_processors is not None:
|
| 524 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 525 |
+
|
| 526 |
+
def forward(
|
| 527 |
+
self,
|
| 528 |
+
hidden_states: torch.Tensor,
|
| 529 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 530 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 531 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
| 532 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 533 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 534 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 535 |
+
return_dict: bool = True,
|
| 536 |
+
):
|
| 537 |
+
"""
|
| 538 |
+
The [`PixCellTransformer2DModel`] forward method.
|
| 539 |
+
|
| 540 |
+
Args:
|
| 541 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 542 |
+
Input `hidden_states`.
|
| 543 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 544 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 545 |
+
self-attention.
|
| 546 |
+
timestep (`torch.LongTensor`, *optional*):
|
| 547 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
| 548 |
+
added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
|
| 549 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
| 550 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 551 |
+
`self.processor` in
|
| 552 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 553 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
| 554 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 555 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 556 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 557 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
| 558 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
| 559 |
+
|
| 560 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
| 561 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
| 562 |
+
|
| 563 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
| 564 |
+
above. This bias will be added to the cross-attention scores.
|
| 565 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 566 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 567 |
+
tuple.
|
| 568 |
+
|
| 569 |
+
Returns:
|
| 570 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 571 |
+
`tuple` where the first element is the sample tensor.
|
| 572 |
+
"""
|
| 573 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
| 574 |
+
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
|
| 575 |
+
|
| 576 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 577 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 578 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 579 |
+
# expects mask of shape:
|
| 580 |
+
# [batch, key_tokens]
|
| 581 |
+
# adds singleton query_tokens dimension:
|
| 582 |
+
# [batch, 1, key_tokens]
|
| 583 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 584 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 585 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 586 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 587 |
+
# assume that mask is expressed as:
|
| 588 |
+
# (1 = keep, 0 = discard)
|
| 589 |
+
# convert mask into a bias that can be added to attention scores:
|
| 590 |
+
# (keep = +0, discard = -10000.0)
|
| 591 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 592 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 593 |
+
|
| 594 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 595 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 596 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 597 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 598 |
+
|
| 599 |
+
# 1. Input
|
| 600 |
+
batch_size = hidden_states.shape[0]
|
| 601 |
+
height, width = (
|
| 602 |
+
hidden_states.shape[-2] // self.config.patch_size,
|
| 603 |
+
hidden_states.shape[-1] // self.config.patch_size,
|
| 604 |
+
)
|
| 605 |
+
hidden_states = self.pos_embed(hidden_states)
|
| 606 |
+
|
| 607 |
+
timestep, embedded_timestep = self.adaln_single(
|
| 608 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
if self.caption_projection is not None:
|
| 612 |
+
# Add positional embeddings to conditions if >1 UNI are given
|
| 613 |
+
if self.y_pos_embed is not None:
|
| 614 |
+
encoder_hidden_states = self.y_pos_embed(encoder_hidden_states)
|
| 615 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 616 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 617 |
+
|
| 618 |
+
# 2. Blocks
|
| 619 |
+
for block in self.transformer_blocks:
|
| 620 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 621 |
+
|
| 622 |
+
def create_custom_forward(module, return_dict=None):
|
| 623 |
+
def custom_forward(*inputs):
|
| 624 |
+
if return_dict is not None:
|
| 625 |
+
return module(*inputs, return_dict=return_dict)
|
| 626 |
+
else:
|
| 627 |
+
return module(*inputs)
|
| 628 |
+
|
| 629 |
+
return custom_forward
|
| 630 |
+
|
| 631 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 632 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 633 |
+
create_custom_forward(block),
|
| 634 |
+
hidden_states,
|
| 635 |
+
attention_mask,
|
| 636 |
+
encoder_hidden_states,
|
| 637 |
+
encoder_attention_mask,
|
| 638 |
+
timestep,
|
| 639 |
+
cross_attention_kwargs,
|
| 640 |
+
None,
|
| 641 |
+
**ckpt_kwargs,
|
| 642 |
+
)
|
| 643 |
+
else:
|
| 644 |
+
hidden_states = block(
|
| 645 |
+
hidden_states,
|
| 646 |
+
attention_mask=attention_mask,
|
| 647 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 648 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 649 |
+
timestep=timestep,
|
| 650 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 651 |
+
class_labels=None,
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
# 3. Output
|
| 655 |
+
shift, scale = (
|
| 656 |
+
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
|
| 657 |
+
).chunk(2, dim=1)
|
| 658 |
+
hidden_states = self.norm_out(hidden_states)
|
| 659 |
+
# Modulation
|
| 660 |
+
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
|
| 661 |
+
hidden_states = self.proj_out(hidden_states)
|
| 662 |
+
hidden_states = hidden_states.squeeze(1)
|
| 663 |
+
|
| 664 |
+
# unpatchify
|
| 665 |
+
hidden_states = hidden_states.reshape(
|
| 666 |
+
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
|
| 667 |
+
)
|
| 668 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 669 |
+
output = hidden_states.reshape(
|
| 670 |
+
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
|
| 671 |
+
)
|
| 672 |
+
|
| 673 |
+
if not return_dict:
|
| 674 |
+
return (output,)
|
| 675 |
+
|
| 676 |
+
return Transformer2DModelOutput(sample=output)
|
vae/config.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.32.2",
|
| 4 |
+
"_name_or_path": "stabilityai/stable-diffusion-3.5-large",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
128,
|
| 8 |
+
256,
|
| 9 |
+
512,
|
| 10 |
+
512
|
| 11 |
+
],
|
| 12 |
+
"down_block_types": [
|
| 13 |
+
"DownEncoderBlock2D",
|
| 14 |
+
"DownEncoderBlock2D",
|
| 15 |
+
"DownEncoderBlock2D",
|
| 16 |
+
"DownEncoderBlock2D"
|
| 17 |
+
],
|
| 18 |
+
"force_upcast": true,
|
| 19 |
+
"in_channels": 3,
|
| 20 |
+
"latent_channels": 16,
|
| 21 |
+
"latents_mean": null,
|
| 22 |
+
"latents_std": null,
|
| 23 |
+
"layers_per_block": 2,
|
| 24 |
+
"mid_block_add_attention": true,
|
| 25 |
+
"norm_num_groups": 32,
|
| 26 |
+
"out_channels": 3,
|
| 27 |
+
"sample_size": 1024,
|
| 28 |
+
"scaling_factor": 1.5305,
|
| 29 |
+
"shift_factor": 0.0609,
|
| 30 |
+
"up_block_types": [
|
| 31 |
+
"UpDecoderBlock2D",
|
| 32 |
+
"UpDecoderBlock2D",
|
| 33 |
+
"UpDecoderBlock2D",
|
| 34 |
+
"UpDecoderBlock2D"
|
| 35 |
+
],
|
| 36 |
+
"use_post_quant_conv": false,
|
| 37 |
+
"use_quant_conv": false
|
| 38 |
+
}
|